| L(s) = 1 | + 3-s + 5-s + 7-s + 3·9-s − 6·11-s − 8·13-s + 15-s + 2·19-s + 21-s − 3·23-s + 8·27-s − 6·29-s + 8·31-s − 6·33-s + 35-s + 4·37-s − 8·39-s + 18·41-s + 14·43-s + 3·45-s − 6·49-s + 6·53-s − 6·55-s + 2·57-s − 6·59-s − 5·61-s + 3·63-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 0.447·5-s + 0.377·7-s + 9-s − 1.80·11-s − 2.21·13-s + 0.258·15-s + 0.458·19-s + 0.218·21-s − 0.625·23-s + 1.53·27-s − 1.11·29-s + 1.43·31-s − 1.04·33-s + 0.169·35-s + 0.657·37-s − 1.28·39-s + 2.81·41-s + 2.13·43-s + 0.447·45-s − 6/7·49-s + 0.824·53-s − 0.809·55-s + 0.264·57-s − 0.781·59-s − 0.640·61-s + 0.377·63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 313600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 313600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.141648311\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.141648311\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82465588357168608819917333454, −10.52610291090482988796514097006, −9.950990715049745388256337962014, −9.737916287566358540414165534832, −9.345121989817046898139113135481, −8.954531385528270619857509295449, −7.958895390944305290544764811325, −7.84031517987816893486907137675, −7.66773938004256374424419296030, −7.13977471800601991289190397013, −6.49011580126593528066955492493, −5.88088910561294881195022216836, −5.30905693630335057621821325933, −4.88254824613117505382671804894, −4.49408495836826359745648464830, −3.88345065625122588213397001023, −2.80063679728376044789761690869, −2.51464033325386093398727874030, −2.13931140405510732205263691279, −0.811805894555582142530315413422,
0.811805894555582142530315413422, 2.13931140405510732205263691279, 2.51464033325386093398727874030, 2.80063679728376044789761690869, 3.88345065625122588213397001023, 4.49408495836826359745648464830, 4.88254824613117505382671804894, 5.30905693630335057621821325933, 5.88088910561294881195022216836, 6.49011580126593528066955492493, 7.13977471800601991289190397013, 7.66773938004256374424419296030, 7.84031517987816893486907137675, 7.958895390944305290544764811325, 8.954531385528270619857509295449, 9.345121989817046898139113135481, 9.737916287566358540414165534832, 9.950990715049745388256337962014, 10.52610291090482988796514097006, 10.82465588357168608819917333454