Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 5 x - 36 x^{2} + 305 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.270380560166$, $\pm0.937047226833$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{73})\) |
Galois group: | $C_2^2$ |
Jacobians: | $64$ |
Isomorphism classes: | 136 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3996$ | $13490496$ | $51880083984$ | $191734537791744$ | $713391921885610476$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $67$ | $3625$ | $228562$ | $13847809$ | $844654327$ | $51520034086$ | $3142740147187$ | $191707289174689$ | $11694146003022202$ | $713342913340590625$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=29 x^6+51 x^5+40 x^4+5 x^3+35 x^2+24 x+38$
- $y^2=50 x^6+45 x^5+4 x^4+24 x^3+59 x^2+12 x+15$
- $y^2=27 x^6+7 x^5+36 x^4+57 x^3+18 x^2+25 x$
- $y^2=48 x^6+45 x^5+55 x^4+11 x^3+28 x^2+15 x+4$
- $y^2=45 x^6+28 x^5+43 x^4+16 x^3+47 x^2+27 x+29$
- $y^2=42 x^6+25 x^5+57 x^4+26 x^3+39 x^2+7 x+51$
- $y^2=20 x^6+x^5+12 x^4+20 x^3+45 x^2+49 x+42$
- $y^2=31 x^6+31 x^5+48 x^4+13 x^3+31 x^2+46 x+42$
- $y^2=47 x^6+6 x^5+17 x^4+16 x^3+31 x^2+60 x+40$
- $y^2=10 x^6+33 x^5+51 x^4+45 x^3+24 x^2+29 x+24$
- $y^2=6 x^6+39 x^5+32 x^4+59 x^3+11 x^2+29 x+2$
- $y^2=60 x^6+40 x^5+12 x^4+20 x^3+36 x^2+2 x+22$
- $y^2=49 x^6+19 x^5+42 x^4+4 x^3+28 x^2+25 x+17$
- $y^2=12 x^6+7 x^5+3 x^4+2 x^3+10 x^2+9 x+51$
- $y^2=x^6+x^3+42$
- $y^2=10 x^6+9 x^5+10 x^4+31 x^3+37 x^2+55 x+39$
- $y^2=27 x^6+24 x^5+19 x^3+50 x^2+38 x$
- $y^2=52 x^6+29 x^5+11 x^4+47 x^3+14 x^2+41 x+22$
- $y^2=46 x^6+44 x^5+31 x^4+58 x^3+14 x^2+33 x+59$
- $y^2=16 x^6+15 x^5+23 x^4+5 x^3+18 x^2+23 x+58$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{3}}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{73})\). |
The base change of $A$ to $\F_{61^{3}}$ is 1.226981.bek 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-219}) \)$)$ |
Base change
This is a primitive isogeny class.