Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 8 x + 33 x^{2} - 248 x^{3} + 961 x^{4}$ |
| Frobenius angles: | $\pm0.0884682545701$, $\pm0.578198412097$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{5})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $58$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $739$ | $924489$ | $873793600$ | $851122477449$ | $819861709653859$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $24$ | $964$ | $29328$ | $921604$ | $28637304$ | $887515198$ | $27512407464$ | $852892869124$ | $26439638655408$ | $819628296177604$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 58 curves (of which all are hyperelliptic):
- $y^2=7 x^6+10 x^5+16 x^4+30 x^3+21 x^2+19 x+10$
- $y^2=15 x^6+10 x^5+16 x^4+26 x^3+6 x^2+25 x+30$
- $y^2=13 x^6+5 x^5+16 x^4+11 x^3+17 x^2+24 x+6$
- $y^2=7 x^6+19 x^5+14 x^4+23 x^3+18 x^2+21 x+6$
- $y^2=21 x^6+30 x^5+28 x^4+12 x^3+6 x^2+20 x+23$
- $y^2=15 x^6+25 x^5+18 x^4+7 x^3+26 x^2+27 x+7$
- $y^2=6 x^6+6 x^5+x^4+2 x^3+14 x^2+26 x+26$
- $y^2=26 x^6+8 x^5+20 x^4+10 x^3+4 x^2+21$
- $y^2=3 x^6+3 x^3+11$
- $y^2=3 x^6+3 x^3+23$
- $y^2=20 x^6+7 x^5+16 x^3+10 x^2+14 x+1$
- $y^2=21 x^6+27 x^5+11 x^4+10 x^3+8 x^2+9 x+13$
- $y^2=12 x^6+21 x^5+5 x^4+3 x^3+5 x^2+22 x+18$
- $y^2=26 x^6+25 x^5+18 x^4+16 x^3+x^2+12 x+17$
- $y^2=27 x^6+29 x^5+11 x^4+x^3+28 x^2+21 x+22$
- $y^2=x^6+3 x^5+4 x^4+21 x^3+25 x^2+2 x+13$
- $y^2=27 x^6+18 x^5+2 x^4+21 x^3+3 x^2+29 x+3$
- $y^2=30 x^6+12 x^5+11 x^4+4 x^3+25 x^2+12 x+5$
- $y^2=3 x^6+x^5+5 x^4+17 x^3+19 x^2+26 x+30$
- $y^2=21 x^6+25 x^5+29 x^4+19 x^3+11 x^2+13 x+17$
- and 38 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{3}}$.
Endomorphism algebra over $\F_{31}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{5})\). |
| The base change of $A$ to $\F_{31^{3}}$ is 1.29791.aiy 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-15}) \)$)$ |
Base change
This is a primitive isogeny class.