Properties

Label 2.67.af_abq
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $( 1 - 16 x + 67 x^{2} )( 1 + 11 x + 67 x^{2} )$
  $1 - 5 x - 42 x^{2} - 335 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.0678686046652$, $\pm0.734535271332$
Angle rank:  $1$ (numerical)
Jacobians:  $33$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4108$ $19669104$ $89930413456$ $406126164540096$ $1822738608157901668$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $63$ $4381$ $299004$ $20154025$ $1350051633$ $90458036422$ $6060715663779$ $406067645681809$ $27206534621379588$ $1822837807250086861$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 33 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67^{3}}$.

Endomorphism algebra over $\F_{67}$
The isogeny class factors as 1.67.aq $\times$ 1.67.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{67}$
The base change of $A$ to $\F_{67^{3}}$ is 1.300763.abhw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.abb_ly$2$(not in LMFDB)
2.67.f_abq$2$(not in LMFDB)
2.67.bb_ly$2$(not in LMFDB)
2.67.abg_pa$3$(not in LMFDB)
2.67.al_cc$3$(not in LMFDB)
2.67.k_gd$3$(not in LMFDB)
2.67.q_hh$3$(not in LMFDB)
2.67.w_jv$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.abb_ly$2$(not in LMFDB)
2.67.f_abq$2$(not in LMFDB)
2.67.bb_ly$2$(not in LMFDB)
2.67.abg_pa$3$(not in LMFDB)
2.67.al_cc$3$(not in LMFDB)
2.67.k_gd$3$(not in LMFDB)
2.67.q_hh$3$(not in LMFDB)
2.67.w_jv$3$(not in LMFDB)
2.67.aw_jv$6$(not in LMFDB)
2.67.av_ig$6$(not in LMFDB)
2.67.aq_hh$6$(not in LMFDB)
2.67.ak_gd$6$(not in LMFDB)
2.67.ag_db$6$(not in LMFDB)
2.67.a_aes$6$(not in LMFDB)
2.67.a_n$6$(not in LMFDB)
2.67.a_ef$6$(not in LMFDB)
2.67.g_db$6$(not in LMFDB)
2.67.l_cc$6$(not in LMFDB)
2.67.v_ig$6$(not in LMFDB)
2.67.bg_pa$6$(not in LMFDB)
2.67.a_aef$12$(not in LMFDB)
2.67.a_an$12$(not in LMFDB)
2.67.a_es$12$(not in LMFDB)