Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 16 x + 67 x^{2} )( 1 + 11 x + 67 x^{2} )$ |
$1 - 5 x - 42 x^{2} - 335 x^{3} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.0678686046652$, $\pm0.734535271332$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $33$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4108$ | $19669104$ | $89930413456$ | $406126164540096$ | $1822738608157901668$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $63$ | $4381$ | $299004$ | $20154025$ | $1350051633$ | $90458036422$ | $6060715663779$ | $406067645681809$ | $27206534621379588$ | $1822837807250086861$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 33 curves (of which all are hyperelliptic):
- $y^2=25 x^6+60 x^5+32 x^4+44 x^3+36 x^2+43$
- $y^2=8 x^6+42 x^5+38 x^4+37 x^3+13 x^2+16 x+31$
- $y^2=22 x^6+26 x^5+40 x^4+31 x^3+41 x^2+33 x+7$
- $y^2=35 x^6+48 x^5+40 x^4+14 x^3+32 x^2+40 x+18$
- $y^2=60 x^6+63 x^5+44 x^4+18 x^3+42 x^2+39 x+42$
- $y^2=47 x^6+41 x^5+34 x^4+48 x^3+57 x^2+x+58$
- $y^2=58 x^6+2 x^5+42 x^4+10 x^3+53 x^2+33 x+1$
- $y^2=60 x^6+57 x^5+12 x^4+63 x^3+21 x^2+21 x+7$
- $y^2=58 x^6+31 x^5+31 x^4+37 x^3+37 x^2+6 x+6$
- $y^2=36 x^6+7 x^5+20 x^4+42 x^3+54 x^2+24 x+2$
- $y^2=43 x^6+44 x^5+33 x^4+35 x^3+18 x^2+25 x+64$
- $y^2=26 x^6+47 x^5+10 x^4+48 x^3+8 x^2+65 x+15$
- $y^2=16 x^6+3 x^5+63 x^4+65 x^3+7 x^2+10 x$
- $y^2=5 x^6+13 x^5+49 x^4+46 x^3+52 x^2+60 x+6$
- $y^2=34 x^6+65 x^5+31 x^4+7 x^3+50 x^2+4 x+55$
- $y^2=2 x^6+4 x^3+66$
- $y^2=3 x^6+10 x^5+60 x^4+55 x^3+18 x^2+27 x+45$
- $y^2=63 x^6+54 x^5+29 x^3+5 x^2+5 x+64$
- $y^2=56 x^6+16 x^5+31 x^4+6 x^3+15 x^2+15 x+16$
- $y^2=2 x^6+2 x^3+3$
- and 13 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{3}}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.aq $\times$ 1.67.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{67^{3}}$ is 1.300763.abhw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.