Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 9 x + 41 x^{2} )^{2}$ |
| $1 - 18 x + 163 x^{2} - 738 x^{3} + 1681 x^{4}$ | |
| Frobenius angles: | $\pm0.251940962052$, $\pm0.251940962052$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $15$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3, 11$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1089$ | $2832489$ | $4802490000$ | $8003936949129$ | $13426077749128209$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $24$ | $1684$ | $69678$ | $2832484$ | $115885704$ | $4750094158$ | $194752973544$ | $7984913939524$ | $327381886101438$ | $13422659338393204$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which all are hyperelliptic):
- $y^2=29 x^6+27 x^5+25 x^4+35 x^3+9 x^2+26 x+27$
- $y^2=6 x^6+18 x^5+6 x^4+33 x^3+17 x^2+x+26$
- $y^2=18 x^6+25 x^5+6 x^4+25 x^3+24 x^2+31 x+4$
- $y^2=20 x^6+28 x^5+29 x^4+5 x^3+14 x^2+29 x+10$
- $y^2=4 x^6+39 x^5+26 x^4+36 x^3+35 x^2+21 x+16$
- $y^2=39 x^6+3 x^5+10 x^4+34 x^3+9 x^2+34 x+37$
- $y^2=33 x^6+21 x^5+30 x^4+23 x^3+6 x^2+32 x+37$
- $y^2=39 x^6+30 x^5+35 x^4+38 x^3+30 x^2+12 x+4$
- $y^2=14 x^6+27 x^5+34 x^4+3 x^3+21 x^2+12 x+31$
- $y^2=30 x^6+20 x^5+33 x^4+10 x^3+20 x^2+2 x+13$
- $y^2=28 x^6+36 x^5+16 x^4+37 x^3+18 x^2+2 x+12$
- $y^2=38 x^6+29 x^5+x^4+24 x^3+23 x^2+11 x+25$
- $y^2=18 x^6+16 x^5+34 x^4+18 x^3+20 x^2+32 x+32$
- $y^2=11 x^6+21 x^5+40 x^4+26 x^3+37 x^2+8 x+7$
- $y^2=15 x^6+28 x^5+35 x^4+12 x^3+17 x^2+38 x+17$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The isogeny class factors as 1.41.aj 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-83}) \)$)$ |
Base change
This is a primitive isogeny class.