L(s) = 1 | + 2·7-s − 6·9-s − 6·11-s − 10·19-s − 10·25-s + 14·31-s + 18·47-s + 2·49-s − 4·53-s + 2·59-s + 12·61-s − 12·63-s + 22·67-s − 10·71-s − 12·77-s + 27·81-s + 14·83-s + 36·99-s − 28·101-s + 18·121-s + 127-s + 131-s − 20·133-s + 137-s + 139-s + 149-s + 151-s + ⋯ |
L(s) = 1 | + 0.755·7-s − 2·9-s − 1.80·11-s − 2.29·19-s − 2·25-s + 2.51·31-s + 2.62·47-s + 2/7·49-s − 0.549·53-s + 0.260·59-s + 1.53·61-s − 1.51·63-s + 2.68·67-s − 1.18·71-s − 1.36·77-s + 3·81-s + 1.53·83-s + 3.61·99-s − 2.78·101-s + 1.63·121-s + 0.0887·127-s + 0.0873·131-s − 1.73·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 29246464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29246464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9121815655\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9121815655\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.290920337103433968638082112083, −8.054887254600118427465542165919, −7.85843313138418233801110221546, −7.48814495962168796197319659406, −6.68683156605006657232244898791, −6.68610314191711379422290594135, −5.97965496253258053694474589459, −5.89966678642302658845833196152, −5.39873577745571645868623580820, −5.30230749210438140342246901954, −4.54386949014218662447282705892, −4.53968949114527022381611310034, −3.81973981670672599847778896931, −3.60470616381871799865439070652, −2.67759063260486464183517944594, −2.61419803635471967063127913195, −2.30943975288190432351896170059, −1.90677032215893998120061257157, −0.846203761821719565463581774344, −0.30369910279042619929670735439,
0.30369910279042619929670735439, 0.846203761821719565463581774344, 1.90677032215893998120061257157, 2.30943975288190432351896170059, 2.61419803635471967063127913195, 2.67759063260486464183517944594, 3.60470616381871799865439070652, 3.81973981670672599847778896931, 4.53968949114527022381611310034, 4.54386949014218662447282705892, 5.30230749210438140342246901954, 5.39873577745571645868623580820, 5.89966678642302658845833196152, 5.97965496253258053694474589459, 6.68610314191711379422290594135, 6.68683156605006657232244898791, 7.48814495962168796197319659406, 7.85843313138418233801110221546, 8.054887254600118427465542165919, 8.290920337103433968638082112083