Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 242 x^{2} - 1474 x^{3} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.149177922601$, $\pm0.350822077399$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{13})\) |
Galois group: | $C_2^2$ |
Jacobians: | $80$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3236$ | $20153808$ | $90730078100$ | $406175976900864$ | $1822835992684766996$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $46$ | $4490$ | $301666$ | $20156494$ | $1350123766$ | $90458382170$ | $6060715799338$ | $406067743731934$ | $27206534843224222$ | $1822837804551761450$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 80 curves (of which all are hyperelliptic):
- $y^2=45 x^6+28 x^5+35 x^4+24 x^3+31 x^2+6 x+4$
- $y^2=5 x^6+30 x^5+11 x^4+64 x^3+30 x^2+8 x+52$
- $y^2=31 x^6+24 x^5+66 x^4+64 x^3+44 x^2+57 x+33$
- $y^2=45 x^6+59 x^5+10 x^4+45 x^3+28 x^2+26 x+49$
- $y^2=31 x^6+27 x^5+47 x^4+19 x^3+24 x^2+64 x+20$
- $y^2=32 x^6+35 x^5+3 x^4+44 x^3+5 x^2+15 x+39$
- $y^2=50 x^6+46 x^5+63 x^4+26 x^3+43 x^2+53 x+35$
- $y^2=20 x^6+42 x^5+50 x^4+31 x^3+58 x^2+23 x+18$
- $y^2=x^6+20 x^5+23 x^4+48 x^3+16 x^2+26 x+44$
- $y^2=8 x^6+66 x^5+29 x^4+11 x^3+27 x^2+41 x+28$
- $y^2=43 x^6+27 x^5+27 x^4+62 x^3+41 x^2+47 x+52$
- $y^2=63 x^6+50 x^5+29 x^4+30 x^3+45 x^2+58 x+51$
- $y^2=46 x^6+23 x^5+34 x^4+6 x^3+5 x^2+31 x+44$
- $y^2=57 x^6+54 x^5+29 x^4+50 x^3+14 x^2+40 x+51$
- $y^2=22 x^6+55 x^5+32 x^4+32 x^2+12 x+22$
- $y^2=50 x^6+22 x^5+28 x^4+14 x^3+8 x^2+43 x+40$
- $y^2=25 x^6+62 x^5+33 x^4+66 x^3+60 x^2+44 x+31$
- $y^2=44 x^6+56 x^5+59 x^4+2 x^3+61 x^2+27 x+26$
- $y^2=64 x^6+25 x^5+61 x^4+11 x^3+13 x^2+49 x+48$
- $y^2=2 x^6+31 x^5+63 x^4+65 x^3+14 x^2+61 x+15$
- and 60 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{4}}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{13})\). |
The base change of $A$ to $\F_{67^{4}}$ is 1.20151121.dzi 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-13}) \)$)$ |
- Endomorphism algebra over $\F_{67^{2}}$
The base change of $A$ to $\F_{67^{2}}$ is the simple isogeny class 2.4489.a_dzi and its endomorphism algebra is \(\Q(i, \sqrt{13})\).
Base change
This is a primitive isogeny class.