L(s) = 1 | − 2·7-s − 9-s − 12·17-s + 6·25-s − 4·41-s + 3·49-s + 2·63-s + 12·73-s + 32·79-s + 81-s + 28·89-s + 36·97-s + 16·103-s − 28·113-s + 24·119-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 12·153-s + 157-s + 163-s + 167-s + 22·169-s + ⋯ |
L(s) = 1 | − 0.755·7-s − 1/3·9-s − 2.91·17-s + 6/5·25-s − 0.624·41-s + 3/7·49-s + 0.251·63-s + 1.40·73-s + 3.60·79-s + 1/9·81-s + 2.96·89-s + 3.65·97-s + 1.57·103-s − 2.63·113-s + 2.20·119-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.970·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 28901376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28901376 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.825940971\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.825940971\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.455515470664661825353012362484, −7.905020969208708830589515573637, −7.76727096864747691293533377903, −7.15483660999884910995926633641, −6.82527471771493743365920261249, −6.54965393765185090164397829781, −6.20947951068514871153993092540, −6.19971877832963943881583946857, −5.20341813076062003026679397861, −5.19929833950075121981748658631, −4.66388071760170995845344542250, −4.41945821815079513859095439208, −3.83437554529041327994365089668, −3.45670132383912115271025607665, −3.12848301320029608046129462944, −2.51713108965538197495781262191, −2.04457705963608713460144089676, −1.98552356019295616254431454216, −0.78784547344530291759307318167, −0.47121682533533159680618815094,
0.47121682533533159680618815094, 0.78784547344530291759307318167, 1.98552356019295616254431454216, 2.04457705963608713460144089676, 2.51713108965538197495781262191, 3.12848301320029608046129462944, 3.45670132383912115271025607665, 3.83437554529041327994365089668, 4.41945821815079513859095439208, 4.66388071760170995845344542250, 5.19929833950075121981748658631, 5.20341813076062003026679397861, 6.19971877832963943881583946857, 6.20947951068514871153993092540, 6.54965393765185090164397829781, 6.82527471771493743365920261249, 7.15483660999884910995926633641, 7.76727096864747691293533377903, 7.905020969208708830589515573637, 8.455515470664661825353012362484