L(s) = 1 | − 2·2-s + 3·4-s − 4·8-s − 12·13-s + 5·16-s + 8·19-s − 2·25-s + 24·26-s − 6·32-s − 16·38-s + 24·43-s − 20·47-s − 12·49-s + 4·50-s − 36·52-s + 12·53-s + 7·64-s + 8·67-s + 24·76-s − 32·83-s − 48·86-s − 24·89-s + 40·94-s + 24·98-s − 6·100-s − 28·101-s − 4·103-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 1.41·8-s − 3.32·13-s + 5/4·16-s + 1.83·19-s − 2/5·25-s + 4.70·26-s − 1.06·32-s − 2.59·38-s + 3.65·43-s − 2.91·47-s − 1.71·49-s + 0.565·50-s − 4.99·52-s + 1.64·53-s + 7/8·64-s + 0.977·67-s + 2.75·76-s − 3.51·83-s − 5.17·86-s − 2.54·89-s + 4.12·94-s + 2.42·98-s − 3/5·100-s − 2.78·101-s − 0.394·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27060804 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27060804 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.975651649059871150276668106585, −7.76121043440256224935141202204, −7.34039359006153008722328180034, −7.13970990464356669522366505502, −6.82490242113671407619783578058, −6.53663761817595037057476578508, −5.73256689783162256392863487541, −5.57424753588337693324526660572, −5.21395284705621846276817132426, −4.87268524717272603417978228361, −4.22606347424818622690974268455, −4.04640825984316060567006853798, −3.01205791175435709148495464794, −3.00844145654009425011917256485, −2.49839887865641368095107721357, −2.19093396909125320103006053180, −1.44873419868143909399937424816, −1.06029608974008040071795001976, 0, 0,
1.06029608974008040071795001976, 1.44873419868143909399937424816, 2.19093396909125320103006053180, 2.49839887865641368095107721357, 3.00844145654009425011917256485, 3.01205791175435709148495464794, 4.04640825984316060567006853798, 4.22606347424818622690974268455, 4.87268524717272603417978228361, 5.21395284705621846276817132426, 5.57424753588337693324526660572, 5.73256689783162256392863487541, 6.53663761817595037057476578508, 6.82490242113671407619783578058, 7.13970990464356669522366505502, 7.34039359006153008722328180034, 7.76121043440256224935141202204, 7.975651649059871150276668106585