Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 16 x + 83 x^{2} )^{2}$ |
| $1 + 32 x + 422 x^{2} + 2656 x^{3} + 6889 x^{4}$ | |
| Frobenius angles: | $\pm0.841198311973$, $\pm0.841198311973$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $14$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $10000$ | $46240000$ | $327069610000$ | $2252831296000000$ | $15515252262540250000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $116$ | $6710$ | $572012$ | $47469678$ | $3938840356$ | $326942635430$ | $27136031420572$ | $2252292357492958$ | $186940254886109396$ | $15516041182904374550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=78 x^6+63 x^5+62 x^4+6 x^3+62 x^2+63 x+78$
- $y^2=43 x^6+53 x^5+38 x^4+81 x^2+62 x$
- $y^2=47 x^6+22 x^5+61 x^4+77 x^3+61 x^2+22 x+47$
- $y^2=67 x^6+11 x^5+17 x^4+34 x^3+46 x^2+62 x+70$
- $y^2=75 x^6+40 x^5+79 x^4+11 x^3+79 x^2+40 x+75$
- $y^2=67 x^6+13 x^4+13 x^2+67$
- $y^2=40 x^6+34 x^5+64 x^4+64 x^2+34 x+40$
- $y^2=3 x^6+45 x^5+57 x^4+13 x^3+47 x^2+46 x+40$
- $y^2=2 x^6+32 x^5+29 x^4+56 x^3+48 x^2+51 x+43$
- $y^2=70 x^6+55 x^5+70 x^4+66 x^3+29 x^2+8 x+51$
- $y^2=19 x^6+79 x^4+79 x^2+19$
- $y^2=4 x^6+51 x^5+55 x^4+32 x^3+30 x^2+81 x+33$
- $y^2=3 x^6+x^4+x^2+3$
- $y^2=38 x^6+11 x^5+77 x^4+33 x^3+12 x^2+44 x+28$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The isogeny class factors as 1.83.q 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$ |
Base change
This is a primitive isogeny class.