Properties

Label 2.83.bg_qg
Base field $\F_{83}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{83}$
Dimension:  $2$
L-polynomial:  $( 1 + 16 x + 83 x^{2} )^{2}$
  $1 + 32 x + 422 x^{2} + 2656 x^{3} + 6889 x^{4}$
Frobenius angles:  $\pm0.841198311973$, $\pm0.841198311973$
Angle rank:  $1$ (numerical)
Jacobians:  $14$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10000$ $46240000$ $327069610000$ $2252831296000000$ $15515252262540250000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $116$ $6710$ $572012$ $47469678$ $3938840356$ $326942635430$ $27136031420572$ $2252292357492958$ $186940254886109396$ $15516041182904374550$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{83}$.

Endomorphism algebra over $\F_{83}$
The isogeny class factors as 1.83.q 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.abg_qg$2$(not in LMFDB)
2.83.a_adm$2$(not in LMFDB)
2.83.aq_gr$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.abg_qg$2$(not in LMFDB)
2.83.a_adm$2$(not in LMFDB)
2.83.aq_gr$3$(not in LMFDB)
2.83.a_dm$4$(not in LMFDB)
2.83.q_gr$6$(not in LMFDB)