Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 144 x^{2} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.473626320806$, $\pm0.526373679194$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{2}, \sqrt{-145})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $76$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5474$ | $29964676$ | $151334910146$ | $805887855290896$ | $4297625832506111714$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $74$ | $5618$ | $389018$ | $28378086$ | $2073071594$ | $151335594002$ | $11047398519098$ | $806460002354878$ | $58871586708267914$ | $4297625835308665778$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 76 curves (of which all are hyperelliptic):
- $y^2=24 x^6+13 x^5+40 x^4+28 x^3+62 x^2+58 x+31$
- $y^2=47 x^6+65 x^5+54 x^4+67 x^3+18 x^2+71 x+9$
- $y^2=42 x^6+29 x^5+30 x^4+38 x^3+39 x^2+x+26$
- $y^2=64 x^6+72 x^5+4 x^4+44 x^3+49 x^2+5 x+57$
- $y^2=60 x^6+5 x^5+68 x^4+3 x^3+33 x^2+38 x+50$
- $y^2=8 x^6+25 x^5+48 x^4+15 x^3+19 x^2+44 x+31$
- $y^2=71 x^6+8 x^5+17 x^4+12 x^2+19 x+42$
- $y^2=49 x^6+68 x^5+28 x^4+68 x^3+3 x^2+2 x+51$
- $y^2=26 x^6+48 x^5+67 x^4+48 x^3+15 x^2+10 x+36$
- $y^2=25 x^6+19 x^5+49 x^4+43 x^3+34 x^2+35 x+55$
- $y^2=52 x^6+22 x^5+26 x^4+69 x^3+24 x^2+29 x+56$
- $y^2=23 x^6+7 x^5+56 x^4+16 x^3+37 x^2+44 x+38$
- $y^2=42 x^6+35 x^5+61 x^4+7 x^3+39 x^2+x+44$
- $y^2=31 x^6+67 x^5+49 x^4+43 x^3+44 x^2+43 x+1$
- $y^2=9 x^6+43 x^5+26 x^4+69 x^3+x^2+69 x+5$
- $y^2=3 x^6+61 x^5+x^4+32 x^3+28 x^2+67 x+16$
- $y^2=15 x^6+13 x^5+5 x^4+14 x^3+67 x^2+43 x+7$
- $y^2=8 x^6+70 x^5+29 x^4+72 x^3+60 x^2+70 x+57$
- $y^2=40 x^6+58 x^5+72 x^4+68 x^3+8 x^2+58 x+66$
- $y^2=71 x^6+51 x^5+17 x^4+12 x^2+39 x+42$
- and 56 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-145})\). |
| The base change of $A$ to $\F_{73^{2}}$ is 1.5329.fo 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-145}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.73.a_afo | $4$ | (not in LMFDB) |
| 2.73.ac_c | $8$ | (not in LMFDB) |
| 2.73.c_c | $8$ | (not in LMFDB) |