L(s) = 1 | − 2-s − 3·3-s + 3·6-s − 4·7-s + 8-s + 6·9-s − 3·11-s − 4·13-s + 4·14-s − 16-s + 6·17-s − 6·18-s − 8·19-s + 12·21-s + 3·22-s − 6·23-s − 3·24-s + 4·26-s − 9·27-s + 6·29-s − 8·31-s + 9·33-s − 6·34-s − 16·37-s + 8·38-s + 12·39-s + 6·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.73·3-s + 1.22·6-s − 1.51·7-s + 0.353·8-s + 2·9-s − 0.904·11-s − 1.10·13-s + 1.06·14-s − 1/4·16-s + 1.45·17-s − 1.41·18-s − 1.83·19-s + 2.61·21-s + 0.639·22-s − 1.25·23-s − 0.612·24-s + 0.784·26-s − 1.73·27-s + 1.11·29-s − 1.43·31-s + 1.56·33-s − 1.02·34-s − 2.63·37-s + 1.29·38-s + 1.92·39-s + 0.937·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 202500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 202500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54911184061948457325943695062, −10.41929159624427283601670106434, −10.05049605378469152312790453051, −9.909530277399859716106180001218, −9.144004254066264603035661950833, −8.703415464149144452575373545354, −8.139305372682385888948115746165, −7.45385497477481971104160936022, −6.98160606473388361582558565131, −6.93152735287150688178153848895, −5.94731165742957080282610511362, −5.73465248675527525835266042215, −5.45367246275482720453311730346, −4.45620166140926607087639742337, −4.26574334934088432481035944222, −3.30859819364722614495584263813, −2.54315119257022247051796027279, −1.53972805685923414681871814262, 0, 0,
1.53972805685923414681871814262, 2.54315119257022247051796027279, 3.30859819364722614495584263813, 4.26574334934088432481035944222, 4.45620166140926607087639742337, 5.45367246275482720453311730346, 5.73465248675527525835266042215, 5.94731165742957080282610511362, 6.93152735287150688178153848895, 6.98160606473388361582558565131, 7.45385497477481971104160936022, 8.139305372682385888948115746165, 8.703415464149144452575373545354, 9.144004254066264603035661950833, 9.909530277399859716106180001218, 10.05049605378469152312790453051, 10.41929159624427283601670106434, 10.54911184061948457325943695062