Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x + 7 x^{2} - 174 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.0214139711812$, $\pm0.645252695485$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-5})\) |
Galois group: | $C_2^2$ |
Jacobians: | $18$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $669$ | $688401$ | $580039056$ | $499399817049$ | $420672633832749$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $24$ | $820$ | $23778$ | $706084$ | $20509464$ | $594733606$ | $17249656056$ | $500246433604$ | $14507133448842$ | $420707195120500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=22 x^6+17 x^5+19 x^4+28 x^3+3 x^2+28 x+22$
- $y^2=15 x^6+3 x^5+26 x^4+15 x^3+7 x^2+12$
- $y^2=21 x^6+3 x^5+28 x^4+19 x^3+9 x^2+7 x+21$
- $y^2=8 x^6+27 x^5+22 x^4+18 x^3+7 x^2+21 x+8$
- $y^2=17 x^6+19 x^5+28 x^4+25 x^3+18 x^2+3 x+12$
- $y^2=11 x^6+6 x^5+24 x^4+20 x^3+9 x^2+8 x+1$
- $y^2=26 x^6+11 x^5+22 x^4+2 x^3+8 x^2+2 x+9$
- $y^2=2 x^6+16 x^5+16 x^4+11 x^3+14 x^2+19 x+1$
- $y^2=3 x^6+15 x^5+10 x^4+8 x^3+26 x^2+7 x+10$
- $y^2=6 x^6+27 x^5+23 x^4+7 x^2+9 x+6$
- $y^2=2 x^6+12 x^5+28 x^4+21 x^3+4 x^2+15 x+24$
- $y^2=23 x^6+4 x^5+3 x^4+5 x^3+x^2+20 x+23$
- $y^2=24 x^6+3 x^5+11 x^4+15 x^3+8 x^2+25 x+24$
- $y^2=16 x^6+28 x^5+16 x^4+11 x^3+5 x^2+13 x+19$
- $y^2=19 x^6+4 x^5+15 x^4+19 x^3+x^2+24 x+16$
- $y^2=3 x^6+19 x^5+26 x^4+25 x^3+22 x^2+26 x+21$
- $y^2=21 x^6+4 x^5+15 x^4+17 x^3+20 x^2+6 x+21$
- $y^2=12 x^6+13 x^5+13 x^4+25 x^3+19 x^2+11 x+20$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{3}}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-5})\). |
The base change of $A$ to $\F_{29^{3}}$ is 1.24389.alu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5}) \)$)$ |
Base change
This is a primitive isogeny class.