Properties

Label 450.2.e.a
Level 450450
Weight 22
Character orbit 450.e
Analytic conductor 3.5933.593
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [450,2,Mod(151,450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("450.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(450, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 450=23252 450 = 2 \cdot 3^{2} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 450.e (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,-3,-1,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.593268090963.59326809096
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q2+(ζ62)q3ζ6q4+(2ζ6+1)q6+(4ζ64)q7+q8+(3ζ6+3)q9+(3ζ63)q11+(ζ6+1)q12++9ζ6q99+O(q100) q + (\zeta_{6} - 1) q^{2} + (\zeta_{6} - 2) q^{3} - \zeta_{6} q^{4} + ( - 2 \zeta_{6} + 1) q^{6} + (4 \zeta_{6} - 4) q^{7} + q^{8} + ( - 3 \zeta_{6} + 3) q^{9} + (3 \zeta_{6} - 3) q^{11} + (\zeta_{6} + 1) q^{12} + \cdots + 9 \zeta_{6} q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq23q3q44q7+2q8+3q93q11+3q124q134q14q16+6q17+3q188q193q226q233q24+8q26+8q28++9q99+O(q100) 2 q - q^{2} - 3 q^{3} - q^{4} - 4 q^{7} + 2 q^{8} + 3 q^{9} - 3 q^{11} + 3 q^{12} - 4 q^{13} - 4 q^{14} - q^{16} + 6 q^{17} + 3 q^{18} - 8 q^{19} - 3 q^{22} - 6 q^{23} - 3 q^{24} + 8 q^{26} + 8 q^{28}+ \cdots + 9 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/450Z)×\left(\mathbb{Z}/450\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) ζ6-\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
151.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i −1.50000 + 0.866025i −0.500000 0.866025i 0 1.73205i −2.00000 + 3.46410i 1.00000 1.50000 2.59808i 0
301.1 −0.500000 0.866025i −1.50000 0.866025i −0.500000 + 0.866025i 0 1.73205i −2.00000 3.46410i 1.00000 1.50000 + 2.59808i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.2.e.a 2
3.b odd 2 1 1350.2.e.f 2
5.b even 2 1 450.2.e.h yes 2
5.c odd 4 2 450.2.j.d 4
9.c even 3 1 inner 450.2.e.a 2
9.c even 3 1 4050.2.a.bj 1
9.d odd 6 1 1350.2.e.f 2
9.d odd 6 1 4050.2.a.p 1
15.d odd 2 1 1350.2.e.e 2
15.e even 4 2 1350.2.j.d 4
45.h odd 6 1 1350.2.e.e 2
45.h odd 6 1 4050.2.a.t 1
45.j even 6 1 450.2.e.h yes 2
45.j even 6 1 4050.2.a.b 1
45.k odd 12 2 450.2.j.d 4
45.k odd 12 2 4050.2.c.q 2
45.l even 12 2 1350.2.j.d 4
45.l even 12 2 4050.2.c.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
450.2.e.a 2 1.a even 1 1 trivial
450.2.e.a 2 9.c even 3 1 inner
450.2.e.h yes 2 5.b even 2 1
450.2.e.h yes 2 45.j even 6 1
450.2.j.d 4 5.c odd 4 2
450.2.j.d 4 45.k odd 12 2
1350.2.e.e 2 15.d odd 2 1
1350.2.e.e 2 45.h odd 6 1
1350.2.e.f 2 3.b odd 2 1
1350.2.e.f 2 9.d odd 6 1
1350.2.j.d 4 15.e even 4 2
1350.2.j.d 4 45.l even 12 2
4050.2.a.b 1 45.j even 6 1
4050.2.a.p 1 9.d odd 6 1
4050.2.a.t 1 45.h odd 6 1
4050.2.a.bj 1 9.c even 3 1
4050.2.c.e 2 45.l even 12 2
4050.2.c.q 2 45.k odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(450,[χ])S_{2}^{\mathrm{new}}(450, [\chi]):

T72+4T7+16 T_{7}^{2} + 4T_{7} + 16 Copy content Toggle raw display
T112+3T11+9 T_{11}^{2} + 3T_{11} + 9 Copy content Toggle raw display
T173 T_{17} - 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
33 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
1111 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
1313 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
1717 (T3)2 (T - 3)^{2} Copy content Toggle raw display
1919 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
2323 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
2929 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
3131 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
3737 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
4141 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
4343 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
4747 T212T+144 T^{2} - 12T + 144 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
6161 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
6767 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
7171 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
7373 (T+14)2 (T + 14)^{2} Copy content Toggle raw display
7979 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
8383 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
8989 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
9797 T2+7T+49 T^{2} + 7T + 49 Copy content Toggle raw display
show more
show less