Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 8 x + 37 x^{2} )^{2}$ |
$1 + 16 x + 138 x^{2} + 592 x^{3} + 1369 x^{4}$ | |
Frobenius angles: | $\pm0.728426571754$, $\pm0.728426571754$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $18$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2116$ | $1904400$ | $2527877284$ | $3522378240000$ | $4807587119338756$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $1390$ | $49902$ | $1879438$ | $69329574$ | $2565646270$ | $94933050462$ | $3512473032478$ | $129961747753494$ | $4808584546343950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=32 x^6+13 x^5+10 x^4+4 x^3+10 x^2+13 x+32$
- $y^2=3 x^6+28 x^5+21 x^4+27 x^3+36 x^2+3 x+30$
- $y^2=28 x^6+32 x^5+33 x^4+6 x^3+33 x^2+32 x+28$
- $y^2=35 x^6+x^5+7 x^4+7 x^3+7 x^2+x+35$
- $y^2=x^6+11 x^4+11 x^2+1$
- $y^2=19 x^6+22 x^5+30 x^4+26 x^3+30 x^2+22 x+19$
- $y^2=12 x^6+33 x^5+32 x^4+20 x^3+23 x^2+16 x+21$
- $y^2=27 x^6+21 x^4+21 x^2+27$
- $y^2=2 x^6+8 x^3+17$
- $y^2=22 x^6+13 x^5+36 x^4+4 x^3+36 x^2+13 x+22$
- $y^2=32 x^6+20 x^5+31 x^4+30 x^3+24 x+1$
- $y^2=30 x^6+21 x^5+29 x^4+14 x^3+11 x^2+2 x+7$
- $y^2=30 x^6+22 x^5+3 x^4+3 x^3+12 x^2+19 x+33$
- $y^2=18 x^6+5 x^5+5 x^4+15 x^3+5 x^2+5 x+18$
- $y^2=9 x^6+34 x^5+11 x^4+9 x^3+8 x^2+33 x+7$
- $y^2=3 x^6+22 x^5+21 x^4+28 x^3+21 x^2+22 x+3$
- $y^2=2 x^6+18 x^3+15$
- $y^2=26 x^6+36 x^5+34 x^4+26 x^3+15 x^2+18 x+26$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$The isogeny class factors as 1.37.i 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-21}) \)$)$ |
Base change
This is a primitive isogeny class.