Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 9 x + 89 x^{2} )^{2}$ |
$1 + 18 x + 259 x^{2} + 1602 x^{3} + 7921 x^{4}$ | |
Frobenius angles: | $\pm0.658275487260$, $\pm0.658275487260$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $65$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9801$ | $64304361$ | $494625263616$ | $3937396214255625$ | $31182737242213990521$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $108$ | $8116$ | $701622$ | $62755108$ | $5584241628$ | $496978506286$ | $44231343743772$ | $3936588973904068$ | $350356401406173798$ | $31181719935708009556$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 65 curves (of which all are hyperelliptic):
- $y^2=45 x^6+20 x^5+50 x^4+53 x^3+8 x^2+71 x+22$
- $y^2=72 x^6+84 x^5+53 x^4+79 x^3+19 x^2+84 x+60$
- $y^2=10 x^6+10 x^5+81 x^4+55 x^3+45 x^2+68 x+29$
- $y^2=81 x^6+37 x^5+60 x^4+44 x^3+71 x^2+87 x+46$
- $y^2=16 x^6+10 x^5+22 x^4+53 x^3+39 x^2+34 x+22$
- $y^2=42 x^6+8 x^5+39 x^4+16 x^3+45 x^2+13 x+19$
- $y^2=3 x^6+87 x^5+20 x^4+86 x^3+26 x^2+48 x+9$
- $y^2=36 x^6+87 x^5+43 x^4+54 x^3+85 x^2+11 x+82$
- $y^2=7 x^6+23 x^5+32 x^4+27 x^3+48 x^2+38 x+62$
- $y^2=70 x^6+30 x^5+49 x^4+75 x^3+71 x^2+10 x+29$
- $y^2=88 x^6+52 x^5+43 x^4+14 x^3+x^2+61 x+6$
- $y^2=57 x^6+29 x^5+81 x^4+15 x^3+25 x^2+76 x+81$
- $y^2=12 x^6+65 x^5+70 x^4+74 x^3+x^2+28 x+28$
- $y^2=2 x^6+53 x^5+55 x^4+86 x^3+10 x^2+40 x+85$
- $y^2=34 x^6+77 x^5+80 x^3+58 x^2+17 x+66$
- $y^2=21 x^6+43 x^5+84 x^4+9 x^3+23 x^2+41 x+41$
- $y^2=72 x^6+54 x^5+64 x^4+9 x^3+5 x^2+52 x+87$
- $y^2=16 x^6+74 x^5+75 x^4+30 x^3+82 x^2+8 x+26$
- $y^2=22 x^6+27 x^5+29 x^4+14 x^3+6 x^2+51 x+71$
- $y^2=63 x^6+15 x^5+85 x^4+75 x^3+10 x^2+27 x+28$
- and 45 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The isogeny class factors as 1.89.j 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$ |
Base change
This is a primitive isogeny class.