Properties

Label 2.89.s_jz
Base field $\F_{89}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $( 1 + 9 x + 89 x^{2} )^{2}$
  $1 + 18 x + 259 x^{2} + 1602 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.658275487260$, $\pm0.658275487260$
Angle rank:  $1$ (numerical)
Jacobians:  $65$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9801$ $64304361$ $494625263616$ $3937396214255625$ $31182737242213990521$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $108$ $8116$ $701622$ $62755108$ $5584241628$ $496978506286$ $44231343743772$ $3936588973904068$ $350356401406173798$ $31181719935708009556$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 65 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89}$.

Endomorphism algebra over $\F_{89}$
The isogeny class factors as 1.89.j 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.as_jz$2$(not in LMFDB)
2.89.a_dt$2$(not in LMFDB)
2.89.aj_ai$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.as_jz$2$(not in LMFDB)
2.89.a_dt$2$(not in LMFDB)
2.89.aj_ai$3$(not in LMFDB)
2.89.a_adt$4$(not in LMFDB)
2.89.j_ai$6$(not in LMFDB)