Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x - 51 x^{2} + 268 x^{3} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.245237597129$, $\pm0.911904263795$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-7})\) |
Galois group: | $C_2^2$ |
Jacobians: | $28$ |
Isomorphism classes: | 244 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4711$ | $19630737$ | $90904662016$ | $406167349317849$ | $1822931458090992151$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $4372$ | $302244$ | $20156068$ | $1350194472$ | $90458490022$ | $6060706742232$ | $406067661717316$ | $27206533871355228$ | $1822837806662875732$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):
- $y^2=2 x^6+4 x^3+27$
- $y^2=28 x^6+16 x^5+52 x^4+49 x^3+66 x^2+61 x+55$
- $y^2=49 x^6+64 x^5+63 x^4+34 x^3+21 x^2+23 x+36$
- $y^2=2 x^6+2 x^3+31$
- $y^2=2 x^6+35 x^5+9 x^4+46 x^3+35 x^2+x+42$
- $y^2=2 x^6+2 x^3+53$
- $y^2=30 x^6+24 x^5+14 x^4+53 x^3+66 x^2+20 x+53$
- $y^2=2 x^6+2 x^3+46$
- $y^2=2 x^6+4 x^3+52$
- $y^2=64 x^6+60 x^5+59 x^4+30 x^3+3 x^2+33 x+16$
- $y^2=37 x^6+39 x^5+54 x^4+10 x^3+56 x^2+42 x+10$
- $y^2=27 x^6+64 x^5+33 x^4+26 x^3+58 x^2+33 x+19$
- $y^2=5 x^6+7 x^5+57 x^4+38 x^3+6 x^2+2 x+50$
- $y^2=28 x^6+65 x^5+59 x^4+54 x^3+25 x^2+21 x+4$
- $y^2=37 x^6+30 x^5+51 x^4+59 x^3+17 x^2+54 x+29$
- $y^2=60 x^6+54 x^5+33 x^4+33 x^3+31 x^2+56 x+46$
- $y^2=55 x^6+46 x^5+30 x^4+39 x^3+20 x^2+2 x+48$
- $y^2=66 x^6+39 x^5+20 x^4+45 x^3+52 x^2+33 x+1$
- $y^2=29 x^6+7 x^5+55 x^4+57 x^3+49 x^2+35 x+8$
- $y^2=31 x^6+54 x^5+32 x^4+33 x^3+18 x^2+34 x+10$
- $y^2=2 x^6+2 x^3+58$
- $y^2=23 x^6+35 x^5+42 x^4+44 x^3+55 x^2+53 x+14$
- $y^2=46 x^6+36 x^5+3 x^4+51 x^3+48 x^2+51 x+40$
- $y^2=57 x^6+25 x^5+31 x^4+2 x^3+34 x^2+8 x+7$
- $y^2=2 x^6+2 x^3+12$
- $y^2=21 x^6+4 x^5+x^4+4 x^3+36 x^2+29 x+10$
- $y^2=46 x^6+7 x^5+59 x^4+11 x^3+7 x^2+43 x+24$
- $y^2=2 x^6+4 x^3+5$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{3}}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-7})\). |
The base change of $A$ to $\F_{67^{3}}$ is 1.300763.bcm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.