L(s) = 1 | − 9-s − 4·19-s + 12·29-s + 4·31-s − 24·41-s + 10·49-s − 24·59-s + 4·61-s + 24·71-s − 16·79-s + 81-s + 36·101-s − 28·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 4·171-s + 173-s + 179-s + ⋯ |
L(s) = 1 | − 1/3·9-s − 0.917·19-s + 2.22·29-s + 0.718·31-s − 3.74·41-s + 10/7·49-s − 3.12·59-s + 0.512·61-s + 2.84·71-s − 1.80·79-s + 1/9·81-s + 3.58·101-s − 2.68·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.0769·169-s + 0.305·171-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 15210000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15210000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.497747924\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.497747924\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.553393549374940667645947902979, −8.246338351633735368616140169139, −8.223191789834371459505444545092, −7.53165228627309250225968932222, −7.16816886494807905424675747520, −6.68962048994562177913917311785, −6.51625251273592792889649360143, −6.17292887377036500962934671750, −5.74835771598664034187146743665, −5.18605028454802285187354187023, −4.79871073124165505586241629979, −4.67888752918136377747521631973, −4.10226210043198031200649336447, −3.50090845177034762887597751417, −3.29640906426465562293523460796, −2.66293715557982258690257735159, −2.35187024738839499729743681622, −1.68629817374324296152238761595, −1.18003313679719617666703663629, −0.37211195649736004729770519061,
0.37211195649736004729770519061, 1.18003313679719617666703663629, 1.68629817374324296152238761595, 2.35187024738839499729743681622, 2.66293715557982258690257735159, 3.29640906426465562293523460796, 3.50090845177034762887597751417, 4.10226210043198031200649336447, 4.67888752918136377747521631973, 4.79871073124165505586241629979, 5.18605028454802285187354187023, 5.74835771598664034187146743665, 6.17292887377036500962934671750, 6.51625251273592792889649360143, 6.68962048994562177913917311785, 7.16816886494807905424675747520, 7.53165228627309250225968932222, 8.223191789834371459505444545092, 8.246338351633735368616140169139, 8.553393549374940667645947902979