L(s) = 1 | − 2·3-s − 2·5-s + 3·9-s + 2·11-s + 4·15-s − 2·17-s − 6·19-s − 2·23-s + 3·25-s − 4·27-s + 10·29-s − 2·31-s − 4·33-s − 4·37-s + 6·41-s + 4·43-s − 6·45-s − 12·47-s + 4·51-s − 4·53-s − 4·55-s + 12·57-s − 6·59-s − 16·61-s − 4·67-s + 4·69-s + 22·71-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 0.894·5-s + 9-s + 0.603·11-s + 1.03·15-s − 0.485·17-s − 1.37·19-s − 0.417·23-s + 3/5·25-s − 0.769·27-s + 1.85·29-s − 0.359·31-s − 0.696·33-s − 0.657·37-s + 0.937·41-s + 0.609·43-s − 0.894·45-s − 1.75·47-s + 0.560·51-s − 0.549·53-s − 0.539·55-s + 1.58·57-s − 0.781·59-s − 2.04·61-s − 0.488·67-s + 0.481·69-s + 2.61·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8643600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8643600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.336898924447865716572818098314, −8.307462494790344301334692836849, −7.75112764928530717455200414400, −7.49332816366976784694514194768, −6.87246767725945517785513397008, −6.47866242269807619472835415173, −6.43036861165827495316228777643, −6.14308722438061185073775956683, −5.28651346875197164790812005111, −5.17164068998328957742613280428, −4.55429118265446667781241671394, −4.37905654834098986940840298752, −3.81018106522401852077228907246, −3.66199299500958599632960753517, −2.63450416022290959496984609206, −2.56556629290785875711644507677, −1.37069402499890836699197827376, −1.34341653690519261556267413256, 0, 0,
1.34341653690519261556267413256, 1.37069402499890836699197827376, 2.56556629290785875711644507677, 2.63450416022290959496984609206, 3.66199299500958599632960753517, 3.81018106522401852077228907246, 4.37905654834098986940840298752, 4.55429118265446667781241671394, 5.17164068998328957742613280428, 5.28651346875197164790812005111, 6.14308722438061185073775956683, 6.43036861165827495316228777643, 6.47866242269807619472835415173, 6.87246767725945517785513397008, 7.49332816366976784694514194768, 7.75112764928530717455200414400, 8.307462494790344301334692836849, 8.336898924447865716572818098314