Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x + 40 x^{2} + 46 x^{3} + 529 x^{4}$ |
Frobenius angles: | $\pm0.445112334578$, $\pm0.624108999465$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.5509952.1 |
Galois group: | $D_{4}$ |
Jacobians: | $20$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $618$ | $322596$ | $146894274$ | $78079845456$ | $41432054052498$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $26$ | $606$ | $12074$ | $279014$ | $6437206$ | $148031406$ | $3404887750$ | $78311438398$ | $1801149013418$ | $41426499891246$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=14 x^6+13 x^5+8 x^4+21 x^3+14 x+18$
- $y^2=11 x^6+14 x^5+18 x^4+4 x^3+7 x^2+12 x+7$
- $y^2=18 x^6+7 x^5+18 x^4+2 x^3+8 x^2+14 x+15$
- $y^2=x^6+13 x^5+11 x^4+10 x^3+10 x^2+17 x+16$
- $y^2=3 x^6+3 x^5+4 x^3+8 x^2+2 x+1$
- $y^2=7 x^6+21 x^5+10 x^4+10 x^3+11 x^2+20 x+20$
- $y^2=7 x^6+18 x^5+4 x^4+8 x^3+18 x^2+7 x+16$
- $y^2=3 x^6+6 x^5+2 x^4+15 x^3+3 x^2+22 x+22$
- $y^2=3 x^6+2 x^5+12 x^4+4 x^3+22 x^2+22 x+11$
- $y^2=17 x^6+17 x^5+8 x^3+19 x^2+x+2$
- $y^2=20 x^6+22 x^5+14 x^4+6 x^3+18 x^2+8 x+2$
- $y^2=13 x^6+16 x^5+13 x^3+14 x^2+15 x+7$
- $y^2=22 x^6+12 x^5+21 x^4+x^3+4 x^2+13 x+19$
- $y^2=8 x^6+3 x^5+20 x^4+15 x^3+10 x^2+21 x+19$
- $y^2=18 x^6+21 x^5+13 x^4+5 x^3+21 x^2+3 x+21$
- $y^2=10 x^6+6 x^5+8 x^4+4 x^3+13 x^2+x+8$
- $y^2=8 x^6+x^5+14 x^4+14 x^3+12 x^2+21 x+1$
- $y^2=14 x^6+14 x^5+19 x^4+6 x^3+11 x^2+13 x+22$
- $y^2=16 x^6+14 x^5+17 x^4+11 x^3+10 x+17$
- $y^2=6 x^6+21 x^5+3 x^4+16 x^3+4 x^2+19 x+2$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$The endomorphism algebra of this simple isogeny class is 4.0.5509952.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.23.ac_bo | $2$ | (not in LMFDB) |