Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 2 x + 4 x^{2} - 178 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.228062430543$, $\pm0.724445656649$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.24852800.1 |
Galois group: | $D_{4}$ |
Jacobians: | $384$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7746$ | $62789076$ | $496616207346$ | $3938488744453200$ | $31182162068225614146$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $88$ | $7926$ | $704452$ | $62772518$ | $5584138628$ | $496981204326$ | $44231343897752$ | $3936588598330558$ | $350356402614143128$ | $31181719930897624806$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 384 curves (of which all are hyperelliptic):
- $y^2=35 x^6+50 x^5+61 x^4+21 x^3+20 x^2+25 x+11$
- $y^2=66 x^6+46 x^5+39 x^4+9 x^3+84 x^2+64 x+15$
- $y^2=32 x^6+83 x^5+8 x^4+41 x^3+27 x^2+29 x+1$
- $y^2=2 x^6+5 x^5+28 x^4+23 x^3+80 x^2+6 x+52$
- $y^2=62 x^6+85 x^5+64 x^4+29 x^3+75 x^2+84 x+4$
- $y^2=70 x^6+37 x^5+83 x^4+71 x^3+50 x^2+73 x+86$
- $y^2=86 x^6+62 x^5+12 x^4+54 x^3+64 x^2+37 x+49$
- $y^2=6 x^6+68 x^5+11 x^4+85 x^3+49 x^2+70 x+55$
- $y^2=42 x^6+48 x^5+26 x^4+46 x^3+32 x^2+42 x+2$
- $y^2=88 x^6+84 x^5+2 x^4+17 x^3+51 x^2+68 x+60$
- $y^2=50 x^6+79 x^5+36 x^4+27 x^3+22 x^2+7 x+81$
- $y^2=11 x^6+18 x^5+41 x^4+51 x^3+13 x^2+14 x+64$
- $y^2=72 x^6+30 x^5+78 x^4+32 x^3+58 x^2+66 x+65$
- $y^2=8 x^6+19 x^5+74 x^4+2 x^3+18 x^2+22 x+21$
- $y^2=6 x^6+29 x^5+56 x^4+67 x^3+5 x^2+80 x+39$
- $y^2=19 x^6+80 x^5+28 x^3+59 x^2+52 x+66$
- $y^2=67 x^5+28 x^4+57 x^3+79 x^2+49 x+8$
- $y^2=24 x^6+84 x^5+13 x^4+32 x^3+64 x^2+71 x+77$
- $y^2=32 x^6+86 x^5+44 x^4+47 x^3+43 x^2+26 x+88$
- $y^2=52 x^6+2 x^5+82 x^4+49 x^3+24 x^2+21 x+68$
- and 364 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is 4.0.24852800.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.c_e | $2$ | (not in LMFDB) |