Properties

Label 2.89.ac_e
Base field $\F_{89}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $1 - 2 x + 4 x^{2} - 178 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.228062430543$, $\pm0.724445656649$
Angle rank:  $2$ (numerical)
Number field:  4.0.24852800.1
Galois group:  $D_{4}$
Jacobians:  $384$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7746$ $62789076$ $496616207346$ $3938488744453200$ $31182162068225614146$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $88$ $7926$ $704452$ $62772518$ $5584138628$ $496981204326$ $44231343897752$ $3936588598330558$ $350356402614143128$ $31181719930897624806$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 384 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89}$.

Endomorphism algebra over $\F_{89}$
The endomorphism algebra of this simple isogeny class is 4.0.24852800.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.c_e$2$(not in LMFDB)