Properties

Label 2.67.e_fb
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 + 4 x + 131 x^{2} + 268 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.487440836490$, $\pm0.591590009502$
Angle rank:  $2$ (numerical)
Number field:  4.0.51694608.1
Galois group:  $D_{4}$
Jacobians:  $40$
Isomorphism classes:  40

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4893$ $21279657$ $90247137876$ $405815337352089$ $1822916712914539053$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $72$ $4736$ $300060$ $20138596$ $1350183552$ $90458873678$ $6060708500352$ $406067666155204$ $27206534454572772$ $1822837804437991616$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.51694608.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.ae_fb$2$(not in LMFDB)