Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 131 x^{2} + 268 x^{3} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.487440836490$, $\pm0.591590009502$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.51694608.1 |
Galois group: | $D_{4}$ |
Jacobians: | $40$ |
Isomorphism classes: | 40 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4893$ | $21279657$ | $90247137876$ | $405815337352089$ | $1822916712914539053$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $4736$ | $300060$ | $20138596$ | $1350183552$ | $90458873678$ | $6060708500352$ | $406067666155204$ | $27206534454572772$ | $1822837804437991616$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=26 x^6+23 x^5+44 x^4+58 x^3+64 x^2+8 x+27$
- $y^2=14 x^6+38 x^5+13 x^4+38 x^3+26 x^2+60 x+17$
- $y^2=48 x^6+50 x^5+64 x^4+28 x^3+64 x^2+17 x+37$
- $y^2=28 x^6+29 x^5+7 x^4+28 x^3+28 x^2+18 x+23$
- $y^2=65 x^6+14 x^5+12 x^4+51 x^3+32 x^2+49 x+17$
- $y^2=17 x^6+44 x^5+54 x^4+53 x^3+16 x^2+34 x+62$
- $y^2=25 x^6+55 x^5+32 x^4+62 x^3+60 x^2+36 x+37$
- $y^2=56 x^6+8 x^5+65 x^4+13 x^3+63 x^2+9 x+16$
- $y^2=20 x^6+4 x^5+54 x^4+18 x^3+47 x^2+43 x+46$
- $y^2=14 x^6+64 x^5+51 x^4+26 x^3+6 x^2+36 x+10$
- $y^2=39 x^6+10 x^5+46 x^4+9 x^3+64 x^2+47 x+44$
- $y^2=32 x^6+51 x^5+2 x^4+46 x^3+47 x^2+41 x+62$
- $y^2=31 x^6+30 x^5+32 x^4+55 x^3+44 x^2+45 x+62$
- $y^2=65 x^6+46 x^5+47 x^4+43 x^3+23 x^2+56 x+38$
- $y^2=28 x^6+65 x^5+28 x^4+11 x^3+29 x^2+6 x+40$
- $y^2=18 x^6+33 x^5+25 x^4+65 x^3+62 x^2+24 x+30$
- $y^2=51 x^6+42 x^5+12 x^4+10 x^3+66 x^2+37 x+48$
- $y^2=29 x^6+3 x^5+12 x^4+39 x^3+42 x^2+48 x+37$
- $y^2=29 x^6+15 x^5+3 x^3+2 x^2+24 x+9$
- $y^2=40 x^6+20 x^5+20 x^4+20 x^3+49 x^2+51 x+30$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is 4.0.51694608.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.ae_fb | $2$ | (not in LMFDB) |