Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 82 x^{2} + 212 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.427415022666$, $\pm0.666954335528$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.6262592.1 |
Galois group: | $D_{4}$ |
Jacobians: | $252$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3108$ | $8317008$ | $22122001188$ | $62254867497984$ | $174880412980673988$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $58$ | $2958$ | $148594$ | $7889870$ | $418178618$ | $22164123294$ | $1174714402514$ | $62259702160030$ | $3299763375093946$ | $174887470245349038$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 252 curves (of which all are hyperelliptic):
- $y^2=13 x^6+47 x^5+41 x^4+19 x^3+40 x^2+43 x+45$
- $y^2=52 x^6+43 x^5+36 x^4+40 x^3+4 x^2+10 x+11$
- $y^2=28 x^6+34 x^5+34 x^4+50 x^3+49 x^2+21 x+34$
- $y^2=x^6+22 x^5+16 x^4+5 x^3+4 x^2+16 x+6$
- $y^2=18 x^6+41 x^5+34 x^4+33 x^3+43 x^2+33 x+6$
- $y^2=33 x^6+29 x^5+29 x^4+25 x^3+3 x^2+5 x+39$
- $y^2=44 x^6+32 x^5+x^4+20 x^3+11 x^2+4 x+21$
- $y^2=39 x^6+8 x^5+42 x^4+32 x^3+49 x^2+38 x+27$
- $y^2=15 x^6+10 x^5+20 x^4+29 x^3+34 x^2+35 x+11$
- $y^2=46 x^6+28 x^5+35 x^4+25 x^3+9 x^2+52 x+13$
- $y^2=14 x^6+12 x^5+24 x^4+35 x^3+20 x^2+12 x+23$
- $y^2=52 x^6+10 x^5+46 x^4+16 x^3+43 x^2+23 x+21$
- $y^2=49 x^6+26 x^5+2 x^4+25 x^3+40 x^2+36 x+20$
- $y^2=21 x^6+51 x^5+16 x^4+15 x^3+23 x^2+49 x+9$
- $y^2=43 x^6+46 x^5+36 x^4+45 x^3+30 x^2+47 x+23$
- $y^2=46 x^6+48 x^5+19 x^4+31 x^3+8 x^2+13 x+41$
- $y^2=15 x^6+37 x^5+7 x^4+4 x^3+51 x^2+11 x+8$
- $y^2=4 x^6+37 x^5+18 x^4+40 x^3+5 x^2+37 x+51$
- $y^2=34 x^6+30 x^5+24 x^4+21 x^3+17 x^2+41 x+13$
- $y^2=47 x^6+16 x^5+33 x^4+32 x^3+12 x^2+37 x+26$
- and 232 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is 4.0.6262592.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.ae_de | $2$ | (not in LMFDB) |