Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x + 28 x^{2} - 246 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.174135518175$, $\pm0.625983015730$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4857664.1 |
Galois group: | $D_{4}$ |
Jacobians: | $132$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1458$ | $2860596$ | $4719209202$ | $7990548576336$ | $13427240191688898$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $36$ | $1702$ | $68472$ | $2827750$ | $115895736$ | $4750141462$ | $194754635748$ | $7984932741694$ | $327381912036612$ | $13422658992108502$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 132 curves (of which all are hyperelliptic):
- $y^2=16 x^6+19 x^5+21 x^4+36 x^3+27 x^2+36 x+36$
- $y^2=21 x^6+30 x^5+32 x^4+13 x^3+38 x^2+6 x+30$
- $y^2=12 x^6+30 x^5+19 x^4+36 x^3+17 x^2+14 x+39$
- $y^2=19 x^6+32 x^5+39 x^4+29 x^3+31 x^2+22 x+6$
- $y^2=5 x^6+37 x^5+34 x^4+29 x^3+18 x^2+21 x+5$
- $y^2=22 x^6+20 x^5+17 x^4+25 x^3+39 x^2+10 x+31$
- $y^2=13 x^6+32 x^5+7 x^4+35 x^3+37 x^2+32 x+4$
- $y^2=30 x^6+28 x^5+17 x^4+30 x^3+20 x^2+4 x+11$
- $y^2=39 x^6+11 x^5+8 x^4+17 x^3+34 x^2+3 x+25$
- $y^2=9 x^6+17 x^5+27 x^4+33 x^3+38 x^2+34 x+30$
- $y^2=30 x^6+10 x^5+22 x^4+26 x^3+8 x^2+30 x+10$
- $y^2=23 x^6+21 x^5+13 x^4+27 x^3+23 x^2+13 x+24$
- $y^2=21 x^6+13 x^5+35 x^4+22 x^3+22 x+36$
- $y^2=28 x^6+3 x^5+37 x^4+32 x^3+38 x^2+29 x+9$
- $y^2=30 x^6+40 x^5+9 x^4+28 x^3+15 x^2+x+36$
- $y^2=18 x^6+25 x^5+13 x^4+32 x^3+15 x^2+3 x+6$
- $y^2=21 x^6+29 x^5+x^4+31 x^3+18 x^2+31 x+1$
- $y^2=31 x^6+39 x^5+14 x^4+11 x^3+35 x^2+40 x+32$
- $y^2=31 x^6+24 x^5+29 x^4+39 x^3+19 x^2+40 x+4$
- $y^2=7 x^6+25 x^5+17 x^4+36 x^3+8 x^2+28 x+27$
- and 112 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is 4.0.4857664.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.g_bc | $2$ | (not in LMFDB) |