Properties

Label 2.41.ag_bc
Base field $\F_{41}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{41}$
Dimension:  $2$
L-polynomial:  $1 - 6 x + 28 x^{2} - 246 x^{3} + 1681 x^{4}$
Frobenius angles:  $\pm0.174135518175$, $\pm0.625983015730$
Angle rank:  $2$ (numerical)
Number field:  4.0.4857664.1
Galois group:  $D_{4}$
Jacobians:  $132$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1458$ $2860596$ $4719209202$ $7990548576336$ $13427240191688898$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $36$ $1702$ $68472$ $2827750$ $115895736$ $4750141462$ $194754635748$ $7984932741694$ $327381912036612$ $13422658992108502$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 132 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{41}$.

Endomorphism algebra over $\F_{41}$
The endomorphism algebra of this simple isogeny class is 4.0.4857664.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.41.g_bc$2$(not in LMFDB)