Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 6 x + 139 x^{2} + 474 x^{3} + 6241 x^{4}$ |
Frobenius angles: | $\pm0.458853099895$, $\pm0.654461293837$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.60237072.1 |
Galois group: | $D_{4}$ |
Jacobians: | $180$ |
Isomorphism classes: | 180 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6861$ | $40486761$ | $242661714192$ | $1516862128984713$ | $9468294380096560941$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $86$ | $6484$ | $492176$ | $38943748$ | $3077062346$ | $243087199486$ | $19203918090422$ | $1517108827582084$ | $119851594695324848$ | $9468276085176210964$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 180 curves (of which all are hyperelliptic):
- $y^2=11 x^6+26 x^5+61 x^4+46 x^3+28 x^2+16 x+60$
- $y^2=16 x^6+61 x^5+7 x^4+9 x^3+31 x^2+34 x+8$
- $y^2=53 x^6+61 x^5+42 x^4+55 x^3+58 x^2+62 x+39$
- $y^2=13 x^6+60 x^5+11 x^4+x^3+47 x^2+19 x+34$
- $y^2=35 x^6+21 x^5+5 x^4+34 x^3+59 x^2+57 x+66$
- $y^2=4 x^6+6 x^5+46 x^4+31 x^3+74 x^2+27 x+39$
- $y^2=51 x^6+58 x^5+27 x^4+5 x^3+37 x^2+56 x+58$
- $y^2=73 x^6+17 x^5+48 x^4+25 x^3+12 x^2+78 x+18$
- $y^2=31 x^6+x^5+25 x^4+65 x^3+30 x^2+3 x+41$
- $y^2=39 x^6+11 x^5+24 x^4+56 x^3+69 x^2+20 x+12$
- $y^2=4 x^6+46 x^5+75 x^4+38 x^3+12 x^2+56 x+70$
- $y^2=27 x^6+31 x^5+37 x^4+49 x^3+35 x^2+39 x+1$
- $y^2=3 x^6+30 x^5+17 x^4+67 x^3+16 x^2+70 x+6$
- $y^2=16 x^6+x^5+63 x^4+74 x^3+53 x^2+65 x+33$
- $y^2=26 x^6+55 x^5+26 x^4+74 x^3+45 x^2+61 x+55$
- $y^2=42 x^6+46 x^5+57 x^4+72 x^3+22 x^2+70 x+72$
- $y^2=57 x^6+29 x^5+71 x^4+20 x^3+62 x^2+61 x+36$
- $y^2=20 x^6+43 x^5+22 x^4+68 x^3+8 x^2+2 x+51$
- $y^2=77 x^6+67 x^5+39 x^4+12 x^3+52 x^2+31 x+74$
- $y^2=50 x^6+20 x^5+24 x^4+78 x^3+23 x^2+39 x+76$
- and 160 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is 4.0.60237072.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.ag_fj | $2$ | (not in LMFDB) |