Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 29 x^{2} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.218175376116$, $\pm0.781824623884$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{7}, \sqrt{-13})\) |
Galois group: | $C_2^2$ |
Jacobians: | $225$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5301$ | $28100601$ | $151334665524$ | $807017816147481$ | $4297625826215146461$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $5272$ | $389018$ | $28417876$ | $2073071594$ | $151335104758$ | $11047398519098$ | $806460012740068$ | $58871586708267914$ | $4297625822726735272$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 225 curves (of which all are hyperelliptic):
- $y^2=25 x^6+52 x^5+17 x^4+35 x^3+21 x^2+44 x+32$
- $y^2=52 x^6+41 x^5+12 x^4+29 x^3+32 x^2+x+14$
- $y^2=57 x^6+10 x^5+33 x^4+53 x^3+7 x^2+14 x+15$
- $y^2=66 x^6+50 x^5+19 x^4+46 x^3+35 x^2+70 x+2$
- $y^2=69 x^6+67 x^5+3 x^4+53 x^3+3 x^2+15 x+4$
- $y^2=53 x^6+43 x^5+15 x^4+46 x^3+15 x^2+2 x+20$
- $y^2=59 x^6+57 x^5+32 x^4+59 x^3+45 x^2+6 x+57$
- $y^2=44 x^6+28 x^5+53 x^4+6 x^3+61 x^2+13 x+6$
- $y^2=47 x^6+x^5+46 x^4+51 x^3+63 x^2+60 x+20$
- $y^2=16 x^6+5 x^5+11 x^4+36 x^3+23 x^2+8 x+27$
- $y^2=21 x^6+66 x^5+68 x^4+43 x^3+68 x^2+15 x+27$
- $y^2=32 x^6+38 x^5+48 x^4+69 x^3+48 x^2+2 x+62$
- $y^2=68 x^6+54 x^5+9 x^4+71 x^3+67 x^2+9 x+57$
- $y^2=48 x^6+51 x^5+45 x^4+63 x^3+43 x^2+45 x+66$
- $y^2=63 x^6+3 x^5+46 x^4+36 x^3+15 x^2+55 x+64$
- $y^2=36 x^6+17 x^5+38 x^4+67 x^3+25 x^2+64 x+24$
- $y^2=34 x^6+12 x^5+44 x^4+43 x^3+52 x^2+28 x+47$
- $y^2=32 x^6+70 x^5+x^4+31 x^3+13 x^2+36 x+51$
- $y^2=14 x^6+58 x^5+5 x^4+9 x^3+65 x^2+34 x+36$
- $y^2=38 x^6+50 x^5+64 x^4+56 x^3+39 x^2+9 x+52$
- and 205 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{7}, \sqrt{-13})\). |
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.abd 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-91}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.a_bd | $4$ | (not in LMFDB) |