L(s) = 1 | + 2-s + 2·5-s − 8-s + 2·10-s + 4·11-s + 2·13-s − 16-s − 7·19-s + 4·22-s − 6·23-s − 7·25-s + 2·26-s − 8·29-s + 4·31-s + 6·37-s − 7·38-s − 2·40-s + 12·41-s + 8·43-s − 6·46-s + 8·47-s − 7·50-s + 4·53-s + 8·55-s − 8·58-s − 4·59-s + 13·61-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.894·5-s − 0.353·8-s + 0.632·10-s + 1.20·11-s + 0.554·13-s − 1/4·16-s − 1.60·19-s + 0.852·22-s − 1.25·23-s − 7/5·25-s + 0.392·26-s − 1.48·29-s + 0.718·31-s + 0.986·37-s − 1.13·38-s − 0.316·40-s + 1.87·41-s + 1.21·43-s − 0.884·46-s + 1.16·47-s − 0.989·50-s + 0.549·53-s + 1.07·55-s − 1.05·58-s − 0.520·59-s + 1.66·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7001316 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7001316 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.677906649\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.677906649\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.152058993518840572734080700607, −8.742471107416447258100532916500, −8.249952523983594267131045080732, −7.931139018213358642795606502691, −7.60988523738923130747735231469, −6.88317493341133575334168231666, −6.71140557627281364441715370774, −6.12994127619579730224666716194, −5.97506015128172149149775059878, −5.56968975907132186214375588904, −5.47542544984589108479509040951, −4.44572916242978986060154518121, −4.18356286611476036372477265028, −3.93153099776452671846085613972, −3.80426351410436158100006812205, −2.66841255159820985244274110875, −2.52832423782121754325258172247, −1.89545495236671899988924430929, −1.44742321778561280540390847595, −0.55074313184025495314989677912,
0.55074313184025495314989677912, 1.44742321778561280540390847595, 1.89545495236671899988924430929, 2.52832423782121754325258172247, 2.66841255159820985244274110875, 3.80426351410436158100006812205, 3.93153099776452671846085613972, 4.18356286611476036372477265028, 4.44572916242978986060154518121, 5.47542544984589108479509040951, 5.56968975907132186214375588904, 5.97506015128172149149775059878, 6.12994127619579730224666716194, 6.71140557627281364441715370774, 6.88317493341133575334168231666, 7.60988523738923130747735231469, 7.931139018213358642795606502691, 8.249952523983594267131045080732, 8.742471107416447258100532916500, 9.152058993518840572734080700607