Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x - 93 x^{2} + 194 x^{3} + 9409 x^{4}$ |
Frobenius angles: | $\pm0.199041929846$, $\pm0.865708596512$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{2}, \sqrt{-3})\) |
Galois group: | $C_2^2$ |
Jacobians: | $77$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9513$ | $86768073$ | $834021909504$ | $7838963767566729$ | $73743187627808666793$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $100$ | $9220$ | $913822$ | $88546564$ | $8587430500$ | $832974996670$ | $80798272732900$ | $7837433715985924$ | $760231055889557854$ | $73742412680461764100$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 77 curves (of which all are hyperelliptic):
- $y^2=69 x^6+87 x^5+13 x^4+88 x^3+71 x^2+77 x+88$
- $y^2=25 x^6+54 x^5+25 x^4+66 x^3+12 x^2+79 x+78$
- $y^2=82 x^6+3 x^5+47 x^4+18 x^3+3 x^2+53 x+84$
- $y^2=43 x^6+68 x^5+89 x^4+52 x^3+56 x^2+70 x+52$
- $y^2=41 x^6+33 x^5+37 x^4+83 x^3+84 x^2+20 x+60$
- $y^2=8 x^6+15 x^5+21 x^4+17 x^3+56 x^2+30 x+2$
- $y^2=81 x^6+23 x^5+27 x^4+66 x^3+30 x^2+6 x+82$
- $y^2=36 x^6+58 x^5+36 x^4+43 x^3+2 x^2+48 x+1$
- $y^2=54 x^6+65 x^5+45 x^4+79 x^3+28 x^2+12 x+44$
- $y^2=56 x^6+47 x^5+72 x^4+73 x^3+67 x^2+19 x+36$
- $y^2=21 x^6+57 x^5+40 x^4+81 x^3+2 x^2+66 x+52$
- $y^2=18 x^6+46 x^5+84 x^4+59 x^3+60 x^2+78 x+73$
- $y^2=83 x^6+76 x^5+94 x^4+56 x^3+56 x^2+63 x+14$
- $y^2=5 x^6+38 x^5+16 x^4+70 x^3+17 x^2+35 x+93$
- $y^2=21 x^6+22 x^5+71 x^4+2 x^3+x^2+92 x+52$
- $y^2=22 x^6+39 x^5+18 x^4+80 x^3+29 x^2+10 x+2$
- $y^2=11 x^6+25 x^5+83 x^4+34 x^3+66 x^2+17 x+93$
- $y^2=67 x^6+37 x^5+17 x^4+13 x^3+21 x^2+64 x+52$
- $y^2=82 x^6+6 x^5+68 x^4+45 x^3+19 x^2+20 x+91$
- $y^2=4 x^6+68 x^5+61 x^4+24 x^3+36 x^2+39 x+50$
- and 57 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{3}}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-3})\). |
The base change of $A$ to $\F_{97^{3}}$ is 1.912673.wc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
Base change
This is a primitive isogeny class.