Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 14 x + 107 x^{2} + 1246 x^{3} + 7921 x^{4}$ |
| Frobenius angles: | $\pm0.432788543790$, $\pm0.900544789544$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{-10})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $216$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $9289$ | $62877241$ | $498385169296$ | $3935615349656809$ | $31181000792287630249$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $104$ | $7940$ | $706958$ | $62726724$ | $5583930664$ | $496982134766$ | $44231340450856$ | $3936588921025924$ | $350356401467265662$ | $31181719935383898500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 216 curves (of which all are hyperelliptic):
- $y^2=55 x^6+21 x^5+11 x^4+14 x^3+19 x^2+71 x+31$
- $y^2=26 x^6+37 x^5+53 x^4+25 x^3+2 x^2+4 x+32$
- $y^2=4 x^6+35 x^5+34 x^4+53 x^3+51 x^2+5 x+8$
- $y^2=56 x^6+86 x^5+51 x^4+23 x^3+17 x^2+60 x+80$
- $y^2=52 x^6+25 x^5+27 x^4+39 x^3+73 x^2+80 x+76$
- $y^2=57 x^6+79 x^5+58 x^4+68 x^3+57 x^2+7 x+80$
- $y^2=84 x^6+49 x^5+66 x^4+63 x^3+30 x^2+6 x+3$
- $y^2=25 x^6+63 x^5+60 x^4+16 x^3+10 x^2+14 x+49$
- $y^2=56 x^6+52 x^5+24 x^4+85 x^3+83 x^2+36 x+81$
- $y^2=13 x^6+5 x^5+23 x^4+48 x^3+69 x^2+36 x+41$
- $y^2=73 x^6+78 x^5+64 x^4+62 x^2+75 x+88$
- $y^2=38 x^6+2 x^5+26 x^4+17 x^3+43 x^2+52 x+10$
- $y^2=74 x^6+10 x^5+70 x^4+4 x^3+69 x^2+29 x+41$
- $y^2=39 x^6+76 x^5+88 x^4+43 x^3+60 x^2+69 x+71$
- $y^2=73 x^6+9 x^5+79 x^4+77 x^3+56 x^2+4 x+39$
- $y^2=56 x^6+67 x^5+49 x^4+33 x^3+23 x^2+27 x+28$
- $y^2=73 x^6+68 x^5+18 x^4+15 x^3+78 x^2+16 x+51$
- $y^2=73 x^6+40 x^5+9 x^4+47 x^3+17 x^2+66 x+88$
- $y^2=27 x^6+8 x^5+55 x^4+63 x^3+19 x^2+28 x+35$
- $y^2=31 x^6+62 x^5+37 x^4+49 x^3+26 x^2+71 x+25$
- and 196 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{3}}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-10})\). |
| The base change of $A$ to $\F_{89^{3}}$ is 1.704969.bmg 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-10}) \)$)$ |
Base change
This is a primitive isogeny class.