Properties

Label 2.37.ag_ab
Base field $\F_{37}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable no
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{37}$
Dimension:  $2$
L-polynomial:  $1 - 6 x - x^{2} - 222 x^{3} + 1369 x^{4}$
Frobenius angles:  $\pm0.00249485507010$, $\pm0.669161521737$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-7})\)
Galois group:  $C_2^2$
Jacobians:  $0$
Isomorphism classes:  6

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1141$ $1822177$ $2520441616$ $3510054088569$ $4807968191624101$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $32$ $1332$ $49754$ $1872868$ $69335072$ $2565524022$ $94931598752$ $3512477380036$ $129961694308178$ $4808584312690932$

Jacobians and polarizations

This isogeny class is not principally polarizable, and therefore does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{37^{3}}$.

Endomorphism algebra over $\F_{37}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-7})\).
Endomorphism algebra over $\overline{\F}_{37}$
The base change of $A$ to $\F_{37^{3}}$ is 1.50653.ari 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.g_ab$2$(not in LMFDB)
2.37.m_eg$3$(not in LMFDB)
2.37.am_eg$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.g_ab$2$(not in LMFDB)
2.37.m_eg$3$(not in LMFDB)
2.37.am_eg$6$(not in LMFDB)
2.37.a_bm$6$(not in LMFDB)
2.37.a_abm$12$(not in LMFDB)