Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 2 x - 63 x^{2} - 134 x^{3} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.127681533513$, $\pm0.794348200180$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{22})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $40$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4291$ | $19579833$ | $90222136900$ | $406227357352089$ | $1822780773001210771$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $66$ | $4360$ | $299976$ | $20159044$ | $1350082866$ | $90459274750$ | $6060715328118$ | $406067700012484$ | $27206534984972712$ | $1822837803635897800$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=8 x^6+63 x^5+43 x^4+23 x^3+7 x^2+59 x+39$
- $y^2=63 x^6+16 x^5+60 x^4+18 x^3+50 x^2+34 x+56$
- $y^2=32 x^6+3 x^5+13 x^4+44 x^3+22 x^2+53 x+14$
- $y^2=53 x^6+34 x^5+11 x^4+43 x^3+12 x^2+36 x+43$
- $y^2=2 x^6+4 x^3+53$
- $y^2=37 x^6+22 x^5+44 x^4+19 x^3+15 x^2+43 x+58$
- $y^2=62 x^6+25 x^5+35 x^4+29 x^3+54 x^2+49 x+55$
- $y^2=8 x^6+14 x^5+8 x^4+15 x^3+3 x^2+53 x+32$
- $y^2=10 x^6+17 x^5+31 x^4+59 x^3+50 x^2+13 x+6$
- $y^2=46 x^6+44 x^5+60 x^4+9 x^3+3 x^2+17 x+20$
- $y^2=2 x^6+2 x^3+42$
- $y^2=7 x^6+12 x^5+10 x^4+18 x^3+51 x^2+63 x+34$
- $y^2=58 x^6+23 x^5+8 x^4+52 x^3+56 x^2+22 x+54$
- $y^2=15 x^6+37 x^5+42 x^4+25 x^3+57 x^2+42 x+3$
- $y^2=4 x^6+39 x^5+30 x^4+49 x^3+13 x^2+53 x+33$
- $y^2=56 x^6+27 x^5+48 x^4+55 x^3+66 x^2+43 x+8$
- $y^2=7 x^6+22 x^5+27 x^4+37 x^3+48 x^2+5 x+39$
- $y^2=22 x^6+57 x^5+19 x^4+43 x^3+61 x^2+50 x+4$
- $y^2=62 x^6+62 x^5+42 x^4+10 x^3+18 x^2+30 x+16$
- $y^2=17 x^6+24 x^5+56 x^4+22 x^3+56 x^2+4 x+8$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{3}}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{22})\). |
| The base change of $A$ to $\F_{67^{3}}$ is 1.300763.ape 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-66}) \)$)$ |
Base change
This is a primitive isogeny class.