Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 3 x + 23 x^{2} )^{2}$ |
| $1 + 6 x + 55 x^{2} + 138 x^{3} + 529 x^{4}$ | |
| Frobenius angles: | $\pm0.601257449372$, $\pm0.601257449372$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $15$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $729$ | $321489$ | $143712144$ | $78137579961$ | $41491852967889$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $30$ | $604$ | $11808$ | $279220$ | $6446490$ | $148019758$ | $3404640486$ | $78311911204$ | $1801154137824$ | $41426485488364$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which all are hyperelliptic):
- $y^2=17 x^6+7 x^5+x^4+8 x^3+3 x^2+15 x+21$
- $y^2=8 x^6+22 x^5+22 x^4+19 x^3+22 x^2+22 x+8$
- $y^2=16 x^6+6 x^4+9 x^3+13 x^2+6$
- $y^2=18 x^6+18 x^5+3 x^4+22 x^3+3 x^2+18 x+18$
- $y^2=x^6+12 x^5+16 x^4+19 x^3+14 x^2+14 x+22$
- $y^2=6 x^6+11 x^5+15 x^4+7 x^3+15 x^2+5 x+6$
- $y^2=9 x^6+19 x^5+x^4+14 x^3+x^2+19 x+9$
- $y^2=12 x^6+17 x^5+5 x^4+22 x^3+5 x^2+17 x+12$
- $y^2=15 x^6+16 x^5+8 x^4+7 x^3+8 x^2+16 x+15$
- $y^2=x^6+11 x^5+2 x^4+19 x^3+2 x^2+11 x+1$
- $y^2=16 x^6+10 x^4+10 x^3+10 x^2+16$
- $y^2=17 x^6+19 x^5+4 x^4+5 x^3+4 x^2+19 x+17$
- $y^2=12 x^6+21 x^5+21 x^4+13 x^3+21 x^2+21 x+12$
- $y^2=4 x^6+13 x^5+2 x^4+21 x^3+2 x^2+13 x+4$
- $y^2=x^6+7 x^5+12 x^4+x^3+2 x^2+20 x+18$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$| The isogeny class factors as 1.23.d 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-83}) \)$)$ |
Base change
This is a primitive isogeny class.