Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 14 x + 61 x^{2} )( 1 + x + 61 x^{2} )$ |
$1 - 13 x + 108 x^{2} - 793 x^{3} + 3721 x^{4}$ | |
Frobenius angles: | $\pm0.146275019398$, $\pm0.520391647268$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $191$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3024$ | $14019264$ | $51438240000$ | $191634871244544$ | $713390994392653584$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $49$ | $3769$ | $226618$ | $13840609$ | $844653229$ | $51521216038$ | $3142744834369$ | $191707312689889$ | $11694146328640258$ | $713342913214373329$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 191 curves (of which all are hyperelliptic):
- $y^2=29 x^6+29 x^5+31 x^4+22 x^3+10 x^2+23 x+17$
- $y^2=60 x^6+11 x^5+9 x^4+3 x^3+56 x^2+2 x+17$
- $y^2=15 x^6+11 x^5+47 x^4+24 x^3+3 x^2+51 x+33$
- $y^2=37 x^6+49 x^5+37 x^4+48 x^3+4 x^2+38 x+31$
- $y^2=50 x^6+21 x^5+60 x^4+13 x^3+43 x^2+42 x+17$
- $y^2=28 x^6+32 x^5+58 x^4+25 x^3+57 x^2+48 x+44$
- $y^2=28 x^6+22 x^5+30 x^4+37 x^3+42 x^2+41 x+53$
- $y^2=32 x^6+30 x^5+32 x^4+48 x^3+56 x^2+17 x+60$
- $y^2=40 x^6+53 x^5+23 x^4+4 x^3+36 x^2+52 x+6$
- $y^2=18 x^6+20 x^5+57 x^4+59 x^3+42 x^2+59 x+40$
- $y^2=x^6+60 x^5+50 x^4+48 x^3+6 x^2+8 x+19$
- $y^2=52 x^6+16 x^5+42 x^4+13 x^3+9 x^2+38 x+15$
- $y^2=4 x^6+18 x^5+21 x^4+44 x^3+57 x^2+44 x+2$
- $y^2=43 x^6+7 x^5+14 x^4+31 x^3+20 x^2+28 x+58$
- $y^2=13 x^6+9 x^5+56 x^4+41 x^3+48 x^2+48 x+19$
- $y^2=6 x^6+7 x^5+10 x^4+7 x^3+43 x^2+25 x+4$
- $y^2=44 x^6+43 x^5+28 x^4+26 x^3+25 x^2+20 x+58$
- $y^2=59 x^6+52 x^5+26 x^4+48 x^3+18 x^2+59 x+30$
- $y^2=13 x^5+56 x^4+57 x^3+28 x^2+58 x+29$
- $y^2=10 x^6+24 x^5+22 x^4+4 x^3+19 x^2+21 x+11$
- and 171 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{3}}$.
Endomorphism algebra over $\F_{61}$The isogeny class factors as 1.61.ao $\times$ 1.61.b and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{61^{3}}$ is 1.226981.aha 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.