L(s) = 1 | + 3-s + 4·5-s − 4·11-s − 8·13-s + 4·15-s − 4·19-s + 5·25-s − 27-s + 4·29-s − 8·31-s − 4·33-s + 6·37-s − 8·39-s − 8·43-s + 8·47-s + 10·53-s − 16·55-s − 4·57-s − 4·59-s − 4·61-s − 32·65-s + 4·67-s − 16·71-s − 16·73-s + 5·75-s − 8·79-s − 81-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.78·5-s − 1.20·11-s − 2.21·13-s + 1.03·15-s − 0.917·19-s + 25-s − 0.192·27-s + 0.742·29-s − 1.43·31-s − 0.696·33-s + 0.986·37-s − 1.28·39-s − 1.21·43-s + 1.16·47-s + 1.37·53-s − 2.15·55-s − 0.529·57-s − 0.520·59-s − 0.512·61-s − 3.96·65-s + 0.488·67-s − 1.89·71-s − 1.87·73-s + 0.577·75-s − 0.900·79-s − 1/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5531904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5531904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.881416412\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.881416412\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.453430356924096516954387966619, −8.774744769934464720347236597420, −8.426398773470326105187663785078, −8.204943654080108318845110275604, −7.38499561046001567850267299425, −7.30748904774936482182526723639, −7.11932411701363410314260889340, −6.38403530444109867794797676531, −5.90035329179264608648699729110, −5.63029002947119587336120004431, −5.42904588324308453994154679732, −4.74452464209366695153229308184, −4.53158274287161315924384974500, −4.02994866747904851080724044708, −3.09344413618960093487417649904, −2.73251872007533968775631724752, −2.55339438013046948776458137178, −1.81074449269045387743393060542, −1.78714223610492468647488663261, −0.40047566782599084506419003243,
0.40047566782599084506419003243, 1.78714223610492468647488663261, 1.81074449269045387743393060542, 2.55339438013046948776458137178, 2.73251872007533968775631724752, 3.09344413618960093487417649904, 4.02994866747904851080724044708, 4.53158274287161315924384974500, 4.74452464209366695153229308184, 5.42904588324308453994154679732, 5.63029002947119587336120004431, 5.90035329179264608648699729110, 6.38403530444109867794797676531, 7.11932411701363410314260889340, 7.30748904774936482182526723639, 7.38499561046001567850267299425, 8.204943654080108318845110275604, 8.426398773470326105187663785078, 8.774744769934464720347236597420, 9.453430356924096516954387966619