Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 10 x + 47 x^{2} - 530 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.0743197453563$, $\pm0.592346921310$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-7})\) |
Galois group: | $C_2^2$ |
Jacobians: | $64$ |
Isomorphism classes: | 54 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2317$ | $7870849$ | $21989330944$ | $62215669009081$ | $174897737249397757$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $44$ | $2804$ | $147698$ | $7884900$ | $418220044$ | $22164260438$ | $1174709335228$ | $62259705789124$ | $3299763708068714$ | $174887470131824564$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=18 x^6+21 x^5+50 x^4+52 x^3+20 x^2+15 x+49$
- $y^2=22 x^6+18 x^5+29 x^4+48 x^3+9 x^2+26 x+2$
- $y^2=3 x^6+45 x^5+37 x^4+24 x^3+41 x^2+44 x+37$
- $y^2=34 x^6+24 x^5+42 x^4+21 x^3+7 x^2+10$
- $y^2=37 x^6+31 x^5+43 x^4+11 x^3+7 x^2+26 x+1$
- $y^2=22 x^6+45 x^5+51 x^4+45 x^3+10 x^2+26 x+10$
- $y^2=3 x^6+43 x^5+11 x^4+45 x^3+47 x^2+42 x+23$
- $y^2=32 x^6+5 x^5+27 x^4+6 x^3+10 x^2+20 x+27$
- $y^2=43 x^6+45 x^5+34 x^4+46 x^3+6 x^2+41 x+35$
- $y^2=18 x^6+46 x^5+23 x^4+11 x^3+2 x^2+23 x+13$
- $y^2=24 x^6+10 x^5+x^4+42 x^3+3 x^2+40 x+9$
- $y^2=19 x^6+28 x^5+17 x^4+19 x^3+38 x^2+2 x+33$
- $y^2=21 x^6+4 x^5+37 x^4+12 x^3+15 x^2+20 x+18$
- $y^2=44 x^6+2 x^5+34 x^4+12 x^3+30 x^2+23 x+39$
- $y^2=50 x^6+48 x^5+3 x^4+35 x^3+18 x^2+6 x+23$
- $y^2=9 x^6+49 x^5+47 x^4+21 x^3+45 x^2+13 x+51$
- $y^2=37 x^6+47 x^5+11 x^4+16 x^3+3 x^2+7 x+8$
- $y^2=9 x^6+11 x^5+23 x^4+44 x^3+50 x^2+4 x+2$
- $y^2=30 x^6+9 x^5+35 x^4+48 x^3+13 x^2+8 x+45$
- $y^2=39 x^6+40 x^5+25 x^4+26 x^2+51 x+49$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{3}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-7})\). |
The base change of $A$ to $\F_{53^{3}}$ is 1.148877.aws 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.