-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 2317, 'abvar_counts': [2317, 7870849, 21989330944, 62215669009081, 174897737249397757, 491256672529738694656, 1379944142163755611445653, 3876270007533392400878521449, 10888440145435151425079370059776, 30585627249979016626428075844993249], 'abvar_counts_str': '2317 7870849 21989330944 62215669009081 174897737249397757 491256672529738694656 1379944142163755611445653 3876270007533392400878521449 10888440145435151425079370059776 30585627249979016626428075844993249 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.074319745356265, 0.592346921310402], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 44, 'curve_counts': [44, 2804, 147698, 7884900, 418220044, 22164260438, 1174709335228, 62259705789124, 3299763708068714, 174887470131824564], 'curve_counts_str': '44 2804 147698 7884900 418220044 22164260438 1174709335228 62259705789124 3299763708068714 174887470131824564 ', 'curves': ['y^2=18*x^6+21*x^5+50*x^4+52*x^3+20*x^2+15*x+49', 'y^2=22*x^6+18*x^5+29*x^4+48*x^3+9*x^2+26*x+2', 'y^2=3*x^6+45*x^5+37*x^4+24*x^3+41*x^2+44*x+37', 'y^2=34*x^6+24*x^5+42*x^4+21*x^3+7*x^2+10', 'y^2=37*x^6+31*x^5+43*x^4+11*x^3+7*x^2+26*x+1', 'y^2=22*x^6+45*x^5+51*x^4+45*x^3+10*x^2+26*x+10', 'y^2=3*x^6+43*x^5+11*x^4+45*x^3+47*x^2+42*x+23', 'y^2=32*x^6+5*x^5+27*x^4+6*x^3+10*x^2+20*x+27', 'y^2=43*x^6+45*x^5+34*x^4+46*x^3+6*x^2+41*x+35', 'y^2=18*x^6+46*x^5+23*x^4+11*x^3+2*x^2+23*x+13', 'y^2=24*x^6+10*x^5+x^4+42*x^3+3*x^2+40*x+9', 'y^2=19*x^6+28*x^5+17*x^4+19*x^3+38*x^2+2*x+33', 'y^2=21*x^6+4*x^5+37*x^4+12*x^3+15*x^2+20*x+18', 'y^2=44*x^6+2*x^5+34*x^4+12*x^3+30*x^2+23*x+39', 'y^2=50*x^6+48*x^5+3*x^4+35*x^3+18*x^2+6*x+23', 'y^2=9*x^6+49*x^5+47*x^4+21*x^3+45*x^2+13*x+51', 'y^2=37*x^6+47*x^5+11*x^4+16*x^3+3*x^2+7*x+8', 'y^2=9*x^6+11*x^5+23*x^4+44*x^3+50*x^2+4*x+2', 'y^2=30*x^6+9*x^5+35*x^4+48*x^3+13*x^2+8*x+45', 'y^2=39*x^6+40*x^5+25*x^4+26*x^2+51*x+49', 'y^2=3*x^6+48*x^5+43*x^4+31*x^3+36*x^2+20*x+29', 'y^2=19*x^6+3*x^5+25*x^4+6*x^3+9*x^2+51*x+50', 'y^2=38*x^6+14*x^4+42*x^3+27*x^2+2*x+46', 'y^2=48*x^6+31*x^5+24*x^4+17*x^3+9*x^2+28*x+40', 'y^2=7*x^6+17*x^5+4*x^4+24*x^3+x^2+21*x+23', 'y^2=39*x^6+30*x^5+43*x^4+11*x^3+47*x^2+37*x+37', 'y^2=3*x^6+41*x^5+8*x^4+46*x^3+33*x^2+38*x+23', 'y^2=44*x^6+24*x^4+12*x^3+43*x^2+38*x+13', 'y^2=50*x^6+51*x^5+48*x^4+43*x^3+51*x^2+49*x+44', 'y^2=44*x^6+8*x^5+8*x^4+24*x^3+9*x+24', 'y^2=51*x^6+45*x^5+49*x^4+47*x^3+49*x^2+52*x+42', 'y^2=11*x^6+20*x^5+2*x^4+33*x^3+51*x^2+13*x+9', 'y^2=35*x^6+49*x^5+49*x^4+37*x^3+44*x^2+41*x+50', 'y^2=29*x^6+32*x^5+16*x^4+49*x^3+2*x^2+21*x+7', 'y^2=52*x^6+16*x^5+52*x^4+17*x^3+18*x^2+28*x+31', 'y^2=26*x^6+8*x^5+5*x^4+50*x^3+27*x^2+26*x+38', 'y^2=30*x^6+47*x^5+51*x^4+15*x^3+4*x^2+44*x+11', 'y^2=x^6+47*x^5+38*x^4+9*x^3+14*x^2+44*x+1', 'y^2=37*x^6+14*x^5+37*x^4+27*x^3+39*x^2+39*x+17', 'y^2=24*x^6+32*x^5+6*x^4+25*x^3+12*x^2+41*x+15', 'y^2=21*x^6+50*x^5+15*x^4+x^3+27*x^2+3*x+8', 'y^2=x^6+7*x^5+36*x^4+41*x^3+20*x^2+43*x+21', 'y^2=18*x^6+8*x^5+2*x^4+2*x^3+17*x^2+36*x+16', 'y^2=33*x^6+47*x^5+40*x^4+45*x^3+6*x^2+30*x+20', 'y^2=8*x^6+46*x^5+16*x^4+48*x^3+38*x^2+25*x+26', 'y^2=13*x^6+28*x^5+24*x^4+7*x^3+10*x^2+18*x+33', 'y^2=51*x^6+13*x^5+27*x^4+11*x^3+41*x^2+18*x+8', 'y^2=8*x^6+30*x^5+23*x^4+14*x^3+21*x^2+51*x+22', 'y^2=31*x^6+29*x^5+26*x^3+12*x^2+21*x+13', 'y^2=20*x^6+3*x^5+49*x^4+30*x^3+39*x^2+7*x+24', 'y^2=16*x^6+32*x^5+7*x^4+45*x^3+34*x+1', 'y^2=32*x^6+35*x^5+52*x^4+7*x^3+2*x^2+51*x+16', 'y^2=28*x^6+42*x^5+14*x^4+8*x^3+6*x^2+24*x+7', 'y^2=43*x^6+28*x^5+51*x^4+3*x^3+6*x^2+42*x+28', 'y^2=22*x^6+31*x^5+43*x^4+32*x^3+40*x^2+46*x+2', 'y^2=8*x^6+4*x^5+51*x^4+48*x^3+50*x^2+31*x+15', 'y^2=48*x^6+50*x^5+4*x^4+35*x^3+9*x^2+33*x+27', 'y^2=27*x^6+17*x^5+12*x^4+35*x^3+49*x^2+47*x+20', 'y^2=7*x^6+34*x^5+8*x^4+16*x^3+28*x^2+46*x+28', 'y^2=50*x^6+7*x^5+6*x^4+50*x^3+39*x^2+23*x+36', 'y^2=52*x^6+48*x^5+30*x^4+30*x^3+52*x^2+31*x+30', 'y^2=41*x^6+5*x^5+45*x^4+36*x^3+30*x^2+12*x+6', 'y^2=41*x^6+18*x^5+3*x^4+25*x^3+6*x^2+5*x+11', 'y^2=25*x^6+29*x^5+17*x^3+41*x^2+16*x+24'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 6, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 3, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.7.1'], 'geometric_splitting_field': '2.0.7.1', 'geometric_splitting_polynomials': [[2, -1, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 64, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 64, 'label': '2.53.ak_bv', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.441.1'], 'p': 53, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 7, 1, 8], [1, 7, 2, 8], [1, 37, 1, 8]], 'poly': [1, -10, 47, -530, 2809], 'poly_str': '1 -10 47 -530 2809 ', 'primitive_models': [], 'principal_polarization_count': 64, 'q': 53, 'real_poly': [1, -10, -59], 'simple_distinct': ['2.53.ak_bv'], 'simple_factors': ['2.53.ak_bvA'], 'simple_multiplicities': [1], 'singular_primes': ['2,5*F^2+V-4', '47,F^2+4*F+3*V-29'], 'size': 54, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.441.1', 'splitting_polynomials': [[4, -2, -1, -1, 1]], 'twist_count': 6, 'twists': [['2.53.k_bv', '2.2809.ag_aecr', 2], ['2.53.u_hy', '2.148877.abtk_bktko', 3], ['2.53.au_hy', '2.22164361129.afsyu_fvshfmhy', 6], ['2.53.a_g', '2.22164361129.afsyu_fvshfmhy', 6], ['2.53.a_ag', '2.491258904256726154641.kkpfnrcm_bqhzwvclwuabfwjm', 12]], 'weak_equivalence_count': 6, 'zfv_index': 752, 'zfv_index_factorization': [[2, 4], [47, 1]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 32, 'zfv_plus_index': 4, 'zfv_plus_index_factorization': [[2, 2]], 'zfv_plus_norm': 2209, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,5*F^2+V-4', '47,F^2+4*F+3*V-29']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 45631
{'base_label': '2.53.ak_bv', 'extension_degree': 1, 'extension_label': '2.53.ak_bv', 'multiplicity': 1}
-
id: 45632
{'base_label': '2.53.ak_bv', 'extension_degree': 3, 'extension_label': '1.148877.aws', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.441.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.53.ak_bv', 'galois_group': '4T2', 'places': [['46', '40', '15', '15'], ['28', '8', '46', '46']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.7.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.148877.aws', 'galois_group': '2T1', 'places': [['14', '1'], ['38', '1']]}