# Stored data for abelian variety isogeny class 2.53.ak_bv, downloaded from the LMFDB on 06 September 2025. {"abvar_count": 2317, "abvar_counts": [2317, 7870849, 21989330944, 62215669009081, 174897737249397757, 491256672529738694656, 1379944142163755611445653, 3876270007533392400878521449, 10888440145435151425079370059776, 30585627249979016626428075844993249], "abvar_counts_str": "2317 7870849 21989330944 62215669009081 174897737249397757 491256672529738694656 1379944142163755611445653 3876270007533392400878521449 10888440145435151425079370059776 30585627249979016626428075844993249 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 1, "angle_rank": 1, "angles": [0.074319745356265, 0.592346921310402], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 44, "curve_counts": [44, 2804, 147698, 7884900, 418220044, 22164260438, 1174709335228, 62259705789124, 3299763708068714, 174887470131824564], "curve_counts_str": "44 2804 147698 7884900 418220044 22164260438 1174709335228 62259705789124 3299763708068714 174887470131824564 ", "curves": ["y^2=18*x^6+21*x^5+50*x^4+52*x^3+20*x^2+15*x+49", "y^2=22*x^6+18*x^5+29*x^4+48*x^3+9*x^2+26*x+2", "y^2=3*x^6+45*x^5+37*x^4+24*x^3+41*x^2+44*x+37", "y^2=34*x^6+24*x^5+42*x^4+21*x^3+7*x^2+10", "y^2=37*x^6+31*x^5+43*x^4+11*x^3+7*x^2+26*x+1", "y^2=22*x^6+45*x^5+51*x^4+45*x^3+10*x^2+26*x+10", "y^2=3*x^6+43*x^5+11*x^4+45*x^3+47*x^2+42*x+23", "y^2=32*x^6+5*x^5+27*x^4+6*x^3+10*x^2+20*x+27", "y^2=43*x^6+45*x^5+34*x^4+46*x^3+6*x^2+41*x+35", "y^2=18*x^6+46*x^5+23*x^4+11*x^3+2*x^2+23*x+13", "y^2=24*x^6+10*x^5+x^4+42*x^3+3*x^2+40*x+9", "y^2=19*x^6+28*x^5+17*x^4+19*x^3+38*x^2+2*x+33", "y^2=21*x^6+4*x^5+37*x^4+12*x^3+15*x^2+20*x+18", "y^2=44*x^6+2*x^5+34*x^4+12*x^3+30*x^2+23*x+39", "y^2=50*x^6+48*x^5+3*x^4+35*x^3+18*x^2+6*x+23", "y^2=9*x^6+49*x^5+47*x^4+21*x^3+45*x^2+13*x+51", "y^2=37*x^6+47*x^5+11*x^4+16*x^3+3*x^2+7*x+8", "y^2=9*x^6+11*x^5+23*x^4+44*x^3+50*x^2+4*x+2", "y^2=30*x^6+9*x^5+35*x^4+48*x^3+13*x^2+8*x+45", "y^2=39*x^6+40*x^5+25*x^4+26*x^2+51*x+49", "y^2=3*x^6+48*x^5+43*x^4+31*x^3+36*x^2+20*x+29", "y^2=19*x^6+3*x^5+25*x^4+6*x^3+9*x^2+51*x+50", "y^2=38*x^6+14*x^4+42*x^3+27*x^2+2*x+46", "y^2=48*x^6+31*x^5+24*x^4+17*x^3+9*x^2+28*x+40", "y^2=7*x^6+17*x^5+4*x^4+24*x^3+x^2+21*x+23", "y^2=39*x^6+30*x^5+43*x^4+11*x^3+47*x^2+37*x+37", "y^2=3*x^6+41*x^5+8*x^4+46*x^3+33*x^2+38*x+23", "y^2=44*x^6+24*x^4+12*x^3+43*x^2+38*x+13", "y^2=50*x^6+51*x^5+48*x^4+43*x^3+51*x^2+49*x+44", "y^2=44*x^6+8*x^5+8*x^4+24*x^3+9*x+24", "y^2=51*x^6+45*x^5+49*x^4+47*x^3+49*x^2+52*x+42", "y^2=11*x^6+20*x^5+2*x^4+33*x^3+51*x^2+13*x+9", "y^2=35*x^6+49*x^5+49*x^4+37*x^3+44*x^2+41*x+50", "y^2=29*x^6+32*x^5+16*x^4+49*x^3+2*x^2+21*x+7", "y^2=52*x^6+16*x^5+52*x^4+17*x^3+18*x^2+28*x+31", "y^2=26*x^6+8*x^5+5*x^4+50*x^3+27*x^2+26*x+38", "y^2=30*x^6+47*x^5+51*x^4+15*x^3+4*x^2+44*x+11", "y^2=x^6+47*x^5+38*x^4+9*x^3+14*x^2+44*x+1", "y^2=37*x^6+14*x^5+37*x^4+27*x^3+39*x^2+39*x+17", "y^2=24*x^6+32*x^5+6*x^4+25*x^3+12*x^2+41*x+15", "y^2=21*x^6+50*x^5+15*x^4+x^3+27*x^2+3*x+8", "y^2=x^6+7*x^5+36*x^4+41*x^3+20*x^2+43*x+21", "y^2=18*x^6+8*x^5+2*x^4+2*x^3+17*x^2+36*x+16", "y^2=33*x^6+47*x^5+40*x^4+45*x^3+6*x^2+30*x+20", "y^2=8*x^6+46*x^5+16*x^4+48*x^3+38*x^2+25*x+26", "y^2=13*x^6+28*x^5+24*x^4+7*x^3+10*x^2+18*x+33", "y^2=51*x^6+13*x^5+27*x^4+11*x^3+41*x^2+18*x+8", "y^2=8*x^6+30*x^5+23*x^4+14*x^3+21*x^2+51*x+22", "y^2=31*x^6+29*x^5+26*x^3+12*x^2+21*x+13", "y^2=20*x^6+3*x^5+49*x^4+30*x^3+39*x^2+7*x+24", "y^2=16*x^6+32*x^5+7*x^4+45*x^3+34*x+1", "y^2=32*x^6+35*x^5+52*x^4+7*x^3+2*x^2+51*x+16", "y^2=28*x^6+42*x^5+14*x^4+8*x^3+6*x^2+24*x+7", "y^2=43*x^6+28*x^5+51*x^4+3*x^3+6*x^2+42*x+28", "y^2=22*x^6+31*x^5+43*x^4+32*x^3+40*x^2+46*x+2", "y^2=8*x^6+4*x^5+51*x^4+48*x^3+50*x^2+31*x+15", "y^2=48*x^6+50*x^5+4*x^4+35*x^3+9*x^2+33*x+27", "y^2=27*x^6+17*x^5+12*x^4+35*x^3+49*x^2+47*x+20", "y^2=7*x^6+34*x^5+8*x^4+16*x^3+28*x^2+46*x+28", "y^2=50*x^6+7*x^5+6*x^4+50*x^3+39*x^2+23*x+36", "y^2=52*x^6+48*x^5+30*x^4+30*x^3+52*x^2+31*x+30", "y^2=41*x^6+5*x^5+45*x^4+36*x^3+30*x^2+12*x+6", "y^2=41*x^6+18*x^5+3*x^4+25*x^3+6*x^2+5*x+11", "y^2=25*x^6+29*x^5+17*x^3+41*x^2+16*x+24"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 6, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 3, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.7.1"], "geometric_splitting_field": "2.0.7.1", "geometric_splitting_polynomials": [[2, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 64, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 64, "label": "2.53.ak_bv", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.441.1"], "p": 53, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 7, 1, 8], [1, 7, 2, 8], [1, 37, 1, 8]], "poly": [1, -10, 47, -530, 2809], "poly_str": "1 -10 47 -530 2809 ", "primitive_models": [], "principal_polarization_count": 64, "q": 53, "real_poly": [1, -10, -59], "simple_distinct": ["2.53.ak_bv"], "simple_factors": ["2.53.ak_bvA"], "simple_multiplicities": [1], "singular_primes": ["2,5*F^2+V-4", "47,F^2+4*F+3*V-29"], "size": 54, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.441.1", "splitting_polynomials": [[4, -2, -1, -1, 1]], "twist_count": 6, "twists": [["2.53.k_bv", "2.2809.ag_aecr", 2], ["2.53.u_hy", "2.148877.abtk_bktko", 3], ["2.53.au_hy", "2.22164361129.afsyu_fvshfmhy", 6], ["2.53.a_g", "2.22164361129.afsyu_fvshfmhy", 6], ["2.53.a_ag", "2.491258904256726154641.kkpfnrcm_bqhzwvclwuabfwjm", 12]], "weak_equivalence_count": 6, "zfv_index": 752, "zfv_index_factorization": [[2, 4], [47, 1]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_pic_size": 32, "zfv_plus_index": 4, "zfv_plus_index_factorization": [[2, 2]], "zfv_plus_norm": 2209, "zfv_singular_count": 4, "zfv_singular_primes": ["2,5*F^2+V-4", "47,F^2+4*F+3*V-29"]}