L(s) = 1 | + 2·9-s + 8·13-s + 16·19-s − 8·25-s + 16·43-s − 6·49-s − 24·53-s + 16·59-s + 24·67-s − 5·81-s + 16·89-s − 24·101-s + 16·103-s + 16·117-s − 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 32·171-s + 173-s + ⋯ |
L(s) = 1 | + 2/3·9-s + 2.21·13-s + 3.67·19-s − 8/5·25-s + 2.43·43-s − 6/7·49-s − 3.29·53-s + 2.08·59-s + 2.93·67-s − 5/9·81-s + 1.69·89-s − 2.38·101-s + 1.57·103-s + 1.47·117-s − 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 2.44·171-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5345344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5345344 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.887303169\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.887303169\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.114983642853817129541141289229, −8.995775266392768953121788317049, −8.326211835987934304350881964533, −7.937385241716098415572168880703, −7.64117006881790312529037937833, −7.50404280318145860229621803048, −6.79714982768701302967884710978, −6.52737485143285882584087907882, −5.96892489277558984357441023089, −5.75158071653231284803528873585, −5.22065436497575766249670702703, −4.99936432819021215929049381172, −4.23777283923172370488685199031, −3.72233758233307315164987906687, −3.62404890751513656577975573578, −3.11559129153771067718257422577, −2.48510885410420285412813338199, −1.68106222694686911491000137785, −1.21304116967487993763820066742, −0.806873827848139237358564234971,
0.806873827848139237358564234971, 1.21304116967487993763820066742, 1.68106222694686911491000137785, 2.48510885410420285412813338199, 3.11559129153771067718257422577, 3.62404890751513656577975573578, 3.72233758233307315164987906687, 4.23777283923172370488685199031, 4.99936432819021215929049381172, 5.22065436497575766249670702703, 5.75158071653231284803528873585, 5.96892489277558984357441023089, 6.52737485143285882584087907882, 6.79714982768701302967884710978, 7.50404280318145860229621803048, 7.64117006881790312529037937833, 7.937385241716098415572168880703, 8.326211835987934304350881964533, 8.995775266392768953121788317049, 9.114983642853817129541141289229