Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 70 x^{2} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.332042143781$, $\pm0.667957856219$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{2}, \sqrt{-53})\) |
Galois group: | $C_2^2$ |
Jacobians: | $585$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5112$ | $26132544$ | $128099568312$ | $646016975594496$ | $3255243552939354552$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $5182$ | $357912$ | $25422046$ | $1804229352$ | $128098852702$ | $9095120158392$ | $645753579186238$ | $45848500718449032$ | $3255243554868827902$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 585 curves (of which all are hyperelliptic):
- $y^2=66 x^6+17 x^5+19 x^4+41 x^3+65 x^2+7 x+8$
- $y^2=36 x^6+48 x^5+62 x^4+3 x^3+29 x^2+49 x+56$
- $y^2=35 x^6+53 x^5+28 x^4+60 x^3+23 x^2+34 x+1$
- $y^2=32 x^6+16 x^5+54 x^4+65 x^3+19 x^2+25 x+7$
- $y^2=x^6+38 x^5+22 x^4+28 x^3+28 x^2+26 x+58$
- $y^2=7 x^6+53 x^5+12 x^4+54 x^3+54 x^2+40 x+51$
- $y^2=18 x^6+67 x^5+22 x^4+32 x^3+54 x^2+58 x+38$
- $y^2=55 x^6+43 x^5+12 x^4+11 x^3+23 x^2+51 x+53$
- $y^2=56 x^6+6 x^5+17 x^4+69 x^3+7 x^2+35 x+40$
- $y^2=37 x^6+42 x^5+48 x^4+57 x^3+49 x^2+32 x+67$
- $y^2=17 x^6+46 x^5+22 x^4+43 x^3+17 x^2+36 x+5$
- $y^2=48 x^6+38 x^5+12 x^4+17 x^3+48 x^2+39 x+35$
- $y^2=38 x^6+35 x^5+38 x^4+55 x^3+68 x^2+58 x+61$
- $y^2=53 x^6+32 x^5+53 x^4+30 x^3+50 x^2+51 x+1$
- $y^2=24 x^6+57 x^5+20 x^4+15 x^3+42 x^2+61 x+58$
- $y^2=26 x^6+44 x^5+69 x^4+34 x^3+10 x^2+x+51$
- $y^2=53 x^6+51 x^5+70 x^4+46 x^3+51 x^2+40 x+33$
- $y^2=16 x^6+2 x^5+64 x^4+38 x^3+2 x^2+67 x+18$
- $y^2=63 x^6+5 x^5+31 x^4+49 x^3+41 x^2+44 x+44$
- $y^2=15 x^6+35 x^5+4 x^4+59 x^3+3 x^2+24 x+24$
- and 565 more
- $y^2=45 x^6+12 x^5+49 x^4+56 x^3+25 x^2+2 x+61$
- $y^2=31 x^6+13 x^5+59 x^4+37 x^3+33 x^2+14 x+1$
- $y^2=56 x^6+42 x^5+58 x^4+58 x^3+13 x^2+60 x+64$
- $y^2=3 x^6+9 x^5+28 x^4+18 x^3+18 x^2+43 x+22$
- $y^2=21 x^6+63 x^5+54 x^4+55 x^3+55 x^2+17 x+12$
- $y^2=19 x^6+64 x^5+5 x^4+4 x^3+5 x^2+22 x+27$
- $y^2=62 x^6+22 x^5+35 x^4+28 x^3+35 x^2+12 x+47$
- $y^2=3 x^6+44 x^5+67 x^4+56 x^3+19 x^2+57 x+52$
- $y^2=21 x^6+24 x^5+43 x^4+37 x^3+62 x^2+44 x+9$
- $y^2=65 x^6+47 x^5+36 x^4+51 x^2+12 x+22$
- $y^2=29 x^6+45 x^5+39 x^4+2 x^2+13 x+12$
- $y^2=x^6+36 x^5+29 x^4+62 x^3+15 x^2+11 x+2$
- $y^2=7 x^6+39 x^5+61 x^4+8 x^3+34 x^2+6 x+14$
- $y^2=15 x^6+31 x^5+8 x^4+63 x^3+56 x^2+32 x+52$
- $y^2=34 x^6+4 x^5+56 x^4+15 x^3+37 x^2+11 x+9$
- $y^2=34 x^6+2 x^5+45 x^4+20 x^3+10 x^2+15 x+3$
- $y^2=25 x^6+14 x^5+31 x^4+69 x^3+70 x^2+34 x+21$
- $y^2=x^6+50 x^5+69 x^4+35 x^3+31 x^2+34 x+8$
- $y^2=7 x^6+66 x^5+57 x^4+32 x^3+4 x^2+25 x+56$
- $y^2=8 x^6+24 x^5+63 x^4+65 x^2+70 x+7$
- $y^2=56 x^6+26 x^5+15 x^4+29 x^2+64 x+49$
- $y^2=50 x^6+x^5+24 x^4+22 x^3+9 x^2+9 x+44$
- $y^2=66 x^6+7 x^5+26 x^4+12 x^3+63 x^2+63 x+24$
- $y^2=36 x^6+2 x^5+62 x^4+34 x^3+28 x^2+21 x+5$
- $y^2=39 x^6+14 x^5+8 x^4+25 x^3+54 x^2+5 x+35$
- $y^2=23 x^6+17 x^5+28 x^4+50 x^3+70 x^2+55 x+60$
- $y^2=19 x^6+48 x^5+54 x^4+66 x^3+64 x^2+30 x+65$
- $y^2=7 x^6+54 x^5+47 x^4+61 x^3+2 x^2+4 x+31$
- $y^2=56 x^6+26 x^5+24 x^4+64 x^3+16 x^2+65 x+22$
- $y^2=37 x^6+40 x^5+26 x^4+22 x^3+41 x^2+29 x+12$
- $y^2=3 x^6+49 x^5+66 x^4+42 x^3+63 x^2+17 x+16$
- $y^2=49 x^6+33 x^5+46 x^4+26 x^3+48 x^2+48 x+23$
- $y^2=59 x^6+18 x^5+38 x^4+40 x^3+52 x^2+52 x+19$
- $y^2=44 x^6+20 x^5+12 x^4+14 x^3+38 x^2+61 x+9$
- $y^2=24 x^6+69 x^5+13 x^4+27 x^3+53 x^2+x+63$
- $y^2=12 x^6+36 x^5+28 x^4+59 x^3+23 x^2+59 x+51$
- $y^2=13 x^6+39 x^5+54 x^4+58 x^3+19 x^2+58 x+2$
- $y^2=61 x^6+55 x^5+25 x^4+26 x^3+64 x^2+15 x+38$
- $y^2=x^6+30 x^5+33 x^4+40 x^3+22 x^2+34 x+53$
- $y^2=47 x^6+68 x^5+28 x^4+68 x^3+47 x^2+35 x+42$
- $y^2=22 x^6+22 x^5+23 x^4+16 x^3+9 x^2+28 x+66$
- $y^2=12 x^6+12 x^5+19 x^4+41 x^3+63 x^2+54 x+36$
- $y^2=69 x^6+34 x^5+49 x^4+20 x^3+19 x^2+63 x+28$
- $y^2=57 x^6+25 x^5+59 x^4+69 x^3+62 x^2+15 x+54$
- $y^2=57 x^6+15 x^5+x^4+70 x^3+47 x^2+3 x+21$
- $y^2=31 x^6+60 x^5+53 x^4+42 x^3+67 x^2+46 x+39$
- $y^2=4 x^6+65 x^5+16 x^4+10 x^3+43 x^2+38 x+60$
- $y^2=33 x^6+52 x^5+9 x^4+54 x^3+19 x^2+48 x+3$
- $y^2=18 x^6+9 x^5+63 x^4+23 x^3+62 x^2+52 x+21$
- $y^2=49 x^6+28 x^5+16 x^4+31 x^3+32 x^2+44 x+59$
- $y^2=59 x^6+54 x^5+41 x^4+4 x^3+11 x^2+24 x+58$
- $y^2=9 x^6+22 x^5+51 x^4+16 x^3+47 x^2+4 x+20$
- $y^2=63 x^6+12 x^5+2 x^4+41 x^3+45 x^2+28 x+69$
- $y^2=41 x^6+28 x^5+46 x^4+19 x^3+23 x^2+56 x+21$
- $y^2=3 x^6+54 x^5+38 x^4+62 x^3+19 x^2+37 x+5$
- $y^2=56 x^6+57 x^5+15 x^4+24 x^3+30 x^2+2 x+47$
- $y^2=37 x^6+44 x^5+34 x^4+26 x^3+68 x^2+14 x+45$
- $y^2=70 x^6+46 x^5+51 x^4+55 x^3+4 x^2+66 x$
- $y^2=64 x^6+38 x^5+2 x^4+30 x^3+28 x^2+36 x$
- $y^2=19 x^6+33 x^5+38 x^4+40 x^3+52 x^2+8 x+10$
- $y^2=48 x^6+24 x^5+28 x^4+56 x^3+15 x^2+36 x+23$
- $y^2=52 x^6+26 x^5+54 x^4+37 x^3+34 x^2+39 x+19$
- $y^2=48 x^6+7 x^5+70 x^4+54 x^3+51 x^2+55 x+26$
- $y^2=52 x^6+49 x^5+64 x^4+23 x^3+2 x^2+30 x+40$
- $y^2=40 x^6+25 x^5+26 x^4+39 x^3+55 x^2+22 x+9$
- $y^2=67 x^6+33 x^5+40 x^4+60 x^3+30 x^2+12 x+63$
- $y^2=66 x^6+67 x^5+10 x^4+67 x^3+70 x^2+31 x+52$
- $y^2=20 x^6+10 x^5+65 x^4+39 x^3+35 x^2+70 x+4$
- $y^2=69 x^6+70 x^5+29 x^4+60 x^3+32 x^2+64 x+28$
- $y^2=34 x^6+27 x^5+8 x^4+18 x^3+29 x^2+41 x+39$
- $y^2=25 x^6+47 x^5+56 x^4+55 x^3+61 x^2+3 x+60$
- $y^2=32 x^6+60 x^5+39 x^4+48 x^3+35 x^2+24 x+57$
- $y^2=11 x^6+65 x^5+60 x^4+52 x^3+32 x^2+26 x+44$
- $y^2=27 x^6+35 x^5+29 x^4+51 x^3+24 x^2+18 x+33$
- $y^2=47 x^6+32 x^5+61 x^4+2 x^3+26 x^2+55 x+18$
- $y^2=38 x^6+9 x^5+4 x^4+41 x^3+23 x^2+2$
- $y^2=53 x^6+63 x^5+28 x^4+3 x^3+19 x^2+14$
- $y^2=50 x^6+38 x^5+57 x^4+49 x^3+24 x^2+24 x+2$
- $y^2=53 x^6+17 x^5+10 x^4+15 x^3+67 x^2+41 x+5$
- $y^2=16 x^6+48 x^5+70 x^4+34 x^3+43 x^2+3 x+35$
- $y^2=10 x^6+4 x^5+59 x^4+59 x^3+51 x^2+10 x+55$
- $y^2=70 x^6+28 x^5+58 x^4+58 x^3+2 x^2+70 x+30$
- $y^2=15 x^6+x^5+69 x^4+60 x^3+37 x^2+59 x+19$
- $y^2=34 x^6+7 x^5+57 x^4+65 x^3+46 x^2+58 x+62$
- $y^2=47 x^6+2 x^5+27 x^4+27 x^3+19 x^2+50 x+6$
- $y^2=45 x^6+14 x^5+47 x^4+47 x^3+62 x^2+66 x+42$
- $y^2=25 x^6+58 x^5+17 x^4+32 x^3+63 x^2+38 x+26$
- $y^2=33 x^6+51 x^5+48 x^4+11 x^3+15 x^2+53 x+40$
- $y^2=34 x^6+55 x^5+32 x^4+56 x^3+32 x^2+14 x+66$
- $y^2=25 x^6+30 x^5+11 x^4+37 x^3+11 x^2+27 x+36$
- $y^2=17 x^6+21 x^5+44 x^4+57 x^3+57 x^2+3 x+6$
- $y^2=48 x^6+5 x^5+24 x^4+44 x^3+44 x^2+21 x+42$
- $y^2=2 x^6+16 x^5+20 x^4+25 x^3+19 x^2+69$
- $y^2=14 x^6+41 x^5+69 x^4+33 x^3+62 x^2+57$
- $y^2=55 x^6+33 x^5+51 x^4+45 x^3+21 x^2+21 x+31$
- $y^2=58 x^6+39 x^5+62 x^4+36 x^3+56 x^2+16 x+41$
- $y^2=34 x^6+31 x^5+8 x^4+7 x^3+29 x^2+39 x+32$
- $y^2=25 x^6+4 x^5+56 x^4+49 x^3+61 x^2+60 x+11$
- $y^2=12 x^6+61 x^5+62 x^4+40 x^3+42 x^2+65 x+2$
- $y^2=8 x^6+5 x^5+38 x^4+44 x^3+59 x^2+x+18$
- $y^2=56 x^6+35 x^5+53 x^4+24 x^3+58 x^2+7 x+55$
- $y^2=29 x^6+35 x^5+7 x^4+45 x^3+18 x^2+31 x+2$
- $y^2=61 x^6+32 x^5+49 x^4+31 x^3+55 x^2+4 x+14$
- $y^2=13 x^6+57 x^5+47 x^4+60 x^3+32 x^2+37 x+57$
- $y^2=20 x^6+44 x^5+45 x^4+65 x^3+11 x^2+46 x+44$
- $y^2=42 x^6+70 x^5+60 x^4+3 x^3+12 x^2+63 x+57$
- $y^2=10 x^6+64 x^5+65 x^4+21 x^3+13 x^2+15 x+44$
- $y^2=56 x^6+4 x^5+25 x^4+52 x^3+17 x^2+19 x+40$
- $y^2=37 x^6+28 x^5+33 x^4+9 x^3+48 x^2+62 x+67$
- $y^2=48 x^6+6 x^5+30 x^4+42 x^3+28 x^2+45 x+62$
- $y^2=52 x^6+42 x^5+68 x^4+10 x^3+54 x^2+31 x+8$
- $y^2=70 x^6+15 x^5+24 x^4+65 x^3+65 x^2+11 x+51$
- $y^2=64 x^6+34 x^5+26 x^4+29 x^3+29 x^2+6 x+2$
- $y^2=50 x^6+62 x^5+67 x^4+5 x^3+45 x^2+64 x+14$
- $y^2=66 x^6+8 x^5+43 x^4+35 x^3+31 x^2+22 x+27$
- $y^2=20 x^6+22 x^5+67 x^4+15 x^3+22 x^2+4 x+51$
- $y^2=69 x^6+12 x^5+43 x^4+34 x^3+12 x^2+28 x+2$
- $y^2=45 x^6+54 x^5+24 x^4+35 x^3+47 x^2+67 x+58$
- $y^2=31 x^6+23 x^5+26 x^4+32 x^3+45 x^2+43 x+51$
- $y^2=55 x^6+63 x^5+59 x^4+29 x^3+22 x^2+42 x+45$
- $y^2=x^6+11 x^5+8 x^4+11 x^3+66 x^2+61 x+38$
- $y^2=7 x^6+6 x^5+56 x^4+6 x^3+36 x^2+x+53$
- $y^2=26 x^6+10 x^5+38 x^4+3 x^3+43 x^2+56 x+52$
- $y^2=40 x^6+70 x^5+53 x^4+21 x^3+17 x^2+37 x+9$
- $y^2=39 x^6+39 x^5+3 x^4+17 x^3+4 x^2+18 x+70$
- $y^2=60 x^6+60 x^5+21 x^4+48 x^3+28 x^2+55 x+64$
- $y^2=22 x^6+22 x^5+68 x^4+49 x^3+30 x^2+17 x+1$
- $y^2=62 x^6+4 x^5+64 x^4+56 x^3+31 x^2+62 x+36$
- $y^2=8 x^6+28 x^5+22 x^4+37 x^3+4 x^2+8 x+39$
- $y^2=63 x^6+5 x^5+69 x^4+66 x^3+19 x^2+40 x+48$
- $y^2=15 x^6+35 x^5+57 x^4+36 x^3+62 x^2+67 x+52$
- $y^2=64 x^6+56 x^5+9 x^4+61 x^3+37 x^2+27 x+56$
- $y^2=22 x^6+37 x^5+63 x^4+x^3+46 x^2+47 x+37$
- $y^2=14 x^6+47 x^5+47 x^4+18 x^3+50 x^2+63 x+21$
- $y^2=27 x^6+45 x^5+45 x^4+55 x^3+66 x^2+15 x+5$
- $y^2=37 x^6+13 x^5+19 x^4+44 x^3+22 x^2+40 x+9$
- $y^2=46 x^6+20 x^5+62 x^4+24 x^3+12 x^2+67 x+63$
- $y^2=39 x^6+42 x^5+24 x^4+47 x^3+22 x^2+53 x+34$
- $y^2=60 x^6+10 x^5+26 x^4+45 x^3+12 x^2+16 x+25$
- $y^2=13 x^6+27 x^5+3 x^4+29 x^3+37 x^2+66 x+45$
- $y^2=20 x^6+47 x^5+21 x^4+61 x^3+46 x^2+36 x+31$
- $y^2=58 x^6+13 x^5+45 x^4+33 x^3+22 x^2+x+25$
- $y^2=51 x^6+20 x^5+31 x^4+18 x^3+12 x^2+7 x+33$
- $y^2=55 x^6+37 x^5+32 x^4+46 x^3+33 x^2+55 x+63$
- $y^2=48 x^6+53 x^5+43 x^4+44 x^3+55 x^2+21 x+20$
- $y^2=52 x^6+16 x^5+17 x^4+24 x^3+30 x^2+5 x+69$
- $y^2=58 x^6+18 x^5+26 x^4+44 x^3+18 x^2+70 x+47$
- $y^2=51 x^6+55 x^5+40 x^4+24 x^3+55 x^2+64 x+45$
- $y^2=70 x^6+42 x^5+13 x^4+19 x^3+x^2+65 x+52$
- $y^2=64 x^6+10 x^5+20 x^4+62 x^3+7 x^2+29 x+9$
- $y^2=36 x^6+49 x^5+30 x^4+28 x^3+22 x^2+46 x+54$
- $y^2=39 x^6+59 x^5+68 x^4+54 x^3+12 x^2+38 x+23$
- $y^2=66 x^6+20 x^5+26 x^4+29 x^3+53 x^2+67 x+37$
- $y^2=39 x^6+58 x^5+50 x^4+8 x^3+31 x^2+51 x+61$
- $y^2=60 x^6+51 x^5+66 x^4+56 x^3+4 x^2+2 x+1$
- $y^2=65 x^6+6 x^5+23 x^3+17 x^2+52 x+58$
- $y^2=6 x^6+33 x^5+51 x^4+63 x^3+19 x^2+66 x+17$
- $y^2=42 x^6+18 x^5+2 x^4+15 x^3+62 x^2+36 x+48$
- $y^2=8 x^6+13 x^5+58 x^4+66 x^3+33 x^2+14 x+49$
- $y^2=56 x^6+20 x^5+51 x^4+36 x^3+18 x^2+27 x+59$
- $y^2=46 x^6+56 x^5+2 x^4+61 x^3+8 x^2+57 x+21$
- $y^2=38 x^6+37 x^5+14 x^4+x^3+56 x^2+44 x+5$
- $y^2=32 x^6+54 x^5+48 x^4+35 x^3+66 x^2+68 x+52$
- $y^2=11 x^6+23 x^5+52 x^4+32 x^3+36 x^2+50 x+9$
- $y^2=33 x^6+34 x^5+27 x^4+64 x^3+32 x^2+32 x+62$
- $y^2=18 x^6+25 x^5+47 x^4+22 x^3+11 x^2+11 x+8$
- $y^2=4 x^6+62 x^5+28 x^4+32 x^3+47 x^2+29 x+66$
- $y^2=28 x^6+8 x^5+54 x^4+11 x^3+45 x^2+61 x+36$
- $y^2=36 x^6+69 x^5+10 x^4+47 x^3+x^2+41 x+9$
- $y^2=39 x^6+57 x^5+70 x^4+45 x^3+7 x^2+3 x+63$
- $y^2=12 x^6+65 x^5+7 x^4+44 x^3+36 x^2+10 x+38$
- $y^2=46 x^6+62 x^5+61 x^4+12 x^3+48 x^2+42 x$
- $y^2=38 x^6+8 x^5+x^4+13 x^3+52 x^2+10 x$
- $y^2=24 x^6+54 x^5+10 x^4+8 x^3+18 x^2+69 x+31$
- $y^2=26 x^6+23 x^5+70 x^4+56 x^3+55 x^2+57 x+4$
- $y^2=53 x^6+13 x^5+70 x^4+70 x^3+57 x^2+28 x+32$
- $y^2=16 x^6+20 x^5+64 x^4+64 x^3+44 x^2+54 x+11$
- $y^2=31 x^6+42 x^5+39 x^4+43 x^2+8 x+60$
- $y^2=4 x^6+10 x^5+60 x^4+17 x^2+56 x+65$
- $y^2=29 x^6+9 x^5+66 x^4+10 x^3+15 x^2+29 x+23$
- $y^2=61 x^6+63 x^5+36 x^4+70 x^3+34 x^2+61 x+19$
- $y^2=19 x^6+60 x^5+57 x^4+36 x^3+8 x+19$
- $y^2=62 x^6+65 x^5+44 x^4+39 x^3+56 x+62$
- $y^2=56 x^6+63 x^5+69 x^4+61 x^3+25 x^2+35 x+38$
- $y^2=37 x^6+15 x^5+57 x^4+x^3+33 x^2+32 x+53$
- $y^2=23 x^6+14 x^5+11 x^4+30 x^3+63 x^2+2 x$
- $y^2=19 x^6+27 x^5+6 x^4+68 x^3+15 x^2+14 x$
- $y^2=11 x^6+22 x^5+33 x^4+35 x^3+31 x^2+12 x+53$
- $y^2=6 x^6+12 x^5+18 x^4+32 x^3+4 x^2+13 x+16$
- $y^2=26 x^6+8 x^5+15 x^4+15 x^3+16 x^2+18 x+6$
- $y^2=40 x^6+56 x^5+34 x^4+34 x^3+41 x^2+55 x+42$
- $y^2=59 x^6+57 x^5+26 x^4+53 x^3+14 x^2+24 x+42$
- $y^2=7 x^6+60 x^5+57 x^4+39 x^3+42 x^2+26 x+51$
- $y^2=49 x^6+65 x^5+44 x^4+60 x^3+10 x^2+40 x+2$
- $y^2=34 x^6+63 x^5+51 x^4+42 x^3+62 x^2+14 x+61$
- $y^2=25 x^6+15 x^5+2 x^4+10 x^3+8 x^2+27 x+1$
- $y^2=60 x^6+37 x^5+41 x^4+23 x^3+34 x^2+10 x+69$
- $y^2=17 x^6+55 x^4+39 x^3+42 x^2+51 x+44$
- $y^2=48 x^6+30 x^4+60 x^3+10 x^2+2 x+24$
- $y^2=66 x^6+10 x^5+64 x^4+63 x^3+28 x^2+19 x+24$
- $y^2=36 x^6+70 x^5+22 x^4+15 x^3+54 x^2+62 x+26$
- $y^2=68 x^6+14 x^5+54 x^4+47 x^3+7 x^2+69 x+68$
- $y^2=50 x^6+27 x^5+23 x^4+45 x^3+49 x^2+57 x+50$
- $y^2=21 x^6+39 x^5+28 x^4+7 x^3+49 x^2+x+19$
- $y^2=5 x^6+60 x^5+54 x^4+49 x^3+59 x^2+7 x+62$
- $y^2=41 x^5+49 x^4+35 x^3+35 x^2+9 x+47$
- $y^2=3 x^5+59 x^4+32 x^3+32 x^2+63 x+45$
- $y^2=15 x^6+42 x^5+33 x^4+26 x^3+26 x^2+68 x+26$
- $y^2=34 x^6+10 x^5+18 x^4+40 x^3+40 x^2+50 x+40$
- $y^2=53 x^6+62 x^5+63 x^4+8 x^3+25 x^2+34 x+50$
- $y^2=29 x^6+4 x^5+14 x^4+16 x^3+65 x^2+x+1$
- $y^2=61 x^6+28 x^5+27 x^4+41 x^3+29 x^2+7 x+7$
- $y^2=32 x^6+8 x^5+14 x^4+11 x^3+30 x^2+42 x+59$
- $y^2=11 x^6+56 x^5+27 x^4+6 x^3+68 x^2+10 x+58$
- $y^2=14 x^6+39 x^5+39 x^4+70 x^3+13 x^2+67 x+29$
- $y^2=27 x^6+60 x^5+60 x^4+64 x^3+20 x^2+43 x+61$
- $y^2=45 x^6+4 x^5+21 x^4+45 x^3+30 x+46$
- $y^2=31 x^6+28 x^5+5 x^4+31 x^3+68 x+38$
- $y^2=40 x^6+46 x^5+36 x^4+36 x^3+66 x^2+39 x+61$
- $y^2=67 x^6+38 x^5+39 x^4+39 x^3+36 x^2+60 x+1$
- $y^2=33 x^6+32 x^5+16 x^4+68 x^3+x^2+19 x+24$
- $y^2=18 x^6+11 x^5+41 x^4+50 x^3+7 x^2+62 x+26$
- $y^2=19 x^6+36 x^5+42 x^4+16 x^3+23 x^2+34 x+23$
- $y^2=62 x^6+39 x^5+10 x^4+41 x^3+19 x^2+25 x+19$
- $y^2=67 x^6+50 x^5+37 x^4+40 x^3+52 x^2+42 x+19$
- $y^2=43 x^6+66 x^5+46 x^4+67 x^3+9 x^2+10 x+62$
- $y^2=15 x^6+2 x^5+x^4+55 x^3+15 x^2+6 x+70$
- $y^2=34 x^6+14 x^5+7 x^4+30 x^3+34 x^2+42 x+64$
- $y^2=41 x^6+8 x^5+70 x^4+68 x^3+15 x^2+67 x+38$
- $y^2=3 x^6+56 x^5+64 x^4+50 x^3+34 x^2+43 x+53$
- $y^2=43 x^6+51 x^5+59 x^4+55 x^3+18 x^2+69 x+65$
- $y^2=17 x^6+2 x^5+58 x^4+30 x^3+55 x^2+57 x+29$
- $y^2=38 x^6+x^5+17 x^4+21 x^3+47 x^2+25$
- $y^2=53 x^6+7 x^5+48 x^4+5 x^3+45 x^2+33$
- $y^2=34 x^6+39 x^5+x^4+28 x^3+31 x^2+67 x+45$
- $y^2=15 x^6+34 x^5+41 x^4+33 x^3+28 x^2+62 x+41$
- $y^2=34 x^6+25 x^5+3 x^4+18 x^3+54 x^2+8 x+3$
- $y^2=28 x^6+5 x^5+10 x^4+x^3+65 x^2+44 x+44$
- $y^2=67 x^6+64 x^5+53 x^4+58 x^3+36 x^2+53 x+6$
- $y^2=43 x^6+22 x^5+16 x^4+51 x^3+39 x^2+16 x+42$
- $y^2=9 x^6+33 x^5+49 x^4+34 x^3+66 x^2+12 x+25$
- $y^2=63 x^6+18 x^5+59 x^4+25 x^3+36 x^2+13 x+33$
- $y^2=68 x^6+16 x^5+17 x^4+45 x^3+18 x^2+67 x+47$
- $y^2=35 x^6+8 x^5+56 x^4+23 x^3+5 x^2+7 x+26$
- $y^2=36 x^6+50 x^5+48 x^4+7 x^3+5 x^2+9 x+51$
- $y^2=39 x^6+66 x^5+52 x^4+49 x^3+35 x^2+63 x+2$
- $y^2=3 x^6+34 x^5+30 x^4+8 x^3+52 x^2+54 x+5$
- $y^2=21 x^6+25 x^5+68 x^4+56 x^3+9 x^2+23 x+35$
- $y^2=35 x^6+46 x^5+65 x^4+37 x^3+46 x^2+15 x+32$
- $y^2=63 x^6+5 x^5+68 x^4+30 x^3+30 x^2+33 x+47$
- $y^2=15 x^6+35 x^5+50 x^4+68 x^3+68 x^2+18 x+45$
- $y^2=48 x^6+x^5+69 x^4+41 x^3+63 x^2+28 x+34$
- $y^2=33 x^6+58 x^5+49 x^4+19 x^3+29 x^2+58 x+2$
- $y^2=18 x^6+51 x^5+59 x^4+62 x^3+61 x^2+51 x+14$
- $y^2=17 x^6+47 x^5+59 x^4+5 x^3+64 x^2+19 x+51$
- $y^2=48 x^6+45 x^5+58 x^4+35 x^3+22 x^2+62 x+2$
- $y^2=16 x^6+27 x^5+43 x^4+18 x^3+65 x^2+36 x+42$
- $y^2=41 x^6+47 x^5+17 x^4+55 x^3+29 x^2+39 x+10$
- $y^2=60 x^6+46 x^5+46 x^4+9 x^3+25 x^2+52 x+51$
- $y^2=48 x^6+44 x^5+51 x^4+66 x^3+55 x^2+68 x+49$
- $y^2=52 x^6+24 x^5+2 x^4+36 x^3+30 x^2+50 x+59$
- $y^2=56 x^6+6 x^5+24 x^4+59 x^3+57 x^2+52 x+41$
- $y^2=37 x^6+13 x^5+35 x^4+19 x^3+18 x^2+69 x+54$
- $y^2=46 x^6+20 x^5+32 x^4+62 x^3+55 x^2+57 x+23$
- $y^2=56 x^6+59 x^5+46 x^4+20 x^3+62 x^2+30 x+17$
- $y^2=37 x^6+58 x^5+38 x^4+69 x^3+8 x^2+68 x+48$
- $y^2=4 x^6+48 x^5+12 x^4+32 x^3+30 x^2+44 x+9$
- $y^2=28 x^6+52 x^5+13 x^4+11 x^3+68 x^2+24 x+63$
- $y^2=35 x^6+54 x^5+38 x^4+45 x^3+54 x^2+57 x+33$
- $y^2=32 x^6+23 x^5+53 x^4+31 x^3+23 x^2+44 x+18$
- $y^2=10 x^6+45 x^5+13 x^4+70 x^3+21 x^2+53 x+55$
- $y^2=70 x^6+31 x^5+20 x^4+64 x^3+5 x^2+16 x+30$
- $y^2=14 x^6+64 x^5+52 x^4+27 x^3+4 x^2+48 x+54$
- $y^2=27 x^6+22 x^5+9 x^4+47 x^3+28 x^2+52 x+23$
- $y^2=9 x^6+37 x^5+42 x^4+45 x^3+43 x^2+15 x+16$
- $y^2=63 x^6+46 x^5+10 x^4+31 x^3+17 x^2+34 x+41$
- $y^2=4 x^6+54 x^5+28 x^4+25 x^3+5 x^2+51 x+58$
- $y^2=2 x^6+61 x^5+51 x^4+5 x^3+66 x^2+44 x+47$
- $y^2=14 x^6+x^5+2 x^4+35 x^3+36 x^2+24 x+45$
- $y^2=9 x^6+22 x^5+27 x^4+9 x^3+48 x^2+28 x+7$
- $y^2=63 x^6+12 x^5+47 x^4+63 x^3+52 x^2+54 x+49$
- $y^2=68 x^6+28 x^5+19 x^4+62 x^2+48 x+36$
- $y^2=51 x^6+7 x^5+35 x^4+11 x^3+34 x^2+16 x$
- $y^2=2 x^6+49 x^5+32 x^4+6 x^3+25 x^2+41 x$
- $y^2=5 x^6+65 x^5+x^4+24 x^3+43 x^2+41 x+68$
- $y^2=35 x^6+29 x^5+7 x^4+26 x^3+17 x^2+3 x+50$
- $y^2=42 x^6+37 x^5+44 x^4+30 x^3+58 x^2+49 x+52$
- $y^2=10 x^6+46 x^5+24 x^4+68 x^3+51 x^2+59 x+9$
- $y^2=7 x^6+20 x^5+10 x^4+18 x^3+10 x^2+32$
- $y^2=56 x^6+65 x^5+25 x^3+58 x^2+15 x+56$
- $y^2=21 x^6+46 x^5+13 x^4+34 x^3+64 x^2+44 x+50$
- $y^2=5 x^6+38 x^5+20 x^4+25 x^3+22 x^2+24 x+66$
- $y^2=26 x^6+70 x^5+21 x^4+23 x^3+3 x^2+40 x+66$
- $y^2=13 x^6+7 x^5+39 x^4+23 x^3+55 x^2+13 x+61$
- $y^2=20 x^6+49 x^5+60 x^4+19 x^3+30 x^2+20 x+1$
- $y^2=59 x^6+10 x^5+43 x^4+56 x^3+55 x^2+38 x+42$
- $y^2=63 x^6+28 x^5+4 x^4+6 x^3+44 x^2+14 x+51$
- $y^2=15 x^6+54 x^5+28 x^4+42 x^3+24 x^2+27 x+2$
- $y^2=12 x^6+30 x^5+54 x^4+9 x^3+47 x^2+19 x+53$
- $y^2=13 x^6+68 x^5+23 x^4+63 x^3+45 x^2+62 x+16$
- $y^2=4 x^6+31 x^5+4 x^4+45 x^3+27 x^2+52 x+51$
- $y^2=28 x^6+4 x^5+28 x^4+31 x^3+47 x^2+9 x+2$
- $y^2=57 x^6+2 x^5+52 x^4+35 x^3+46 x^2+16 x+24$
- $y^2=44 x^6+14 x^5+9 x^4+32 x^3+38 x^2+41 x+26$
- $y^2=48 x^6+46 x^5+49 x^4+14 x^3+55 x^2+2 x+16$
- $y^2=52 x^6+38 x^5+59 x^4+27 x^3+30 x^2+14 x+41$
- $y^2=57 x^6+7 x^5+40 x^4+62 x^3+11 x^2+16 x+48$
- $y^2=44 x^6+49 x^5+67 x^4+8 x^3+6 x^2+41 x+52$
- $y^2=11 x^6+4 x^5+42 x^4+13 x^3+19 x^2+53 x+70$
- $y^2=6 x^6+28 x^5+10 x^4+20 x^3+62 x^2+16 x+64$
- $y^2=58 x^6+51 x^5+4 x^4+26 x^3+50 x^2+24 x+47$
- $y^2=51 x^6+2 x^5+28 x^4+40 x^3+66 x^2+26 x+45$
- $y^2=36 x^6+38 x^5+25 x^4+32 x^3+60 x^2+56 x+65$
- $y^2=41 x^6+68 x^5+22 x^4+22 x^3+23 x^2+21 x+63$
- $y^2=3 x^6+5 x^5+69 x^4+18 x^3+11 x^2+10 x+54$
- $y^2=21 x^6+35 x^5+57 x^4+55 x^3+6 x^2+70 x+23$
- $y^2=65 x^6+65 x^5+14 x^4+65 x^3+66 x^2+35 x+22$
- $y^2=16 x^6+45 x^5+41 x^4+33 x^3+39 x^2+44 x+4$
- $y^2=65 x^6+45 x^5+57 x^4+14 x^3+10 x^2+10 x+64$
- $y^2=29 x^6+31 x^5+44 x^4+27 x^3+70 x^2+70 x+22$
- $y^2=11 x^6+64 x^5+34 x^4+10 x^3+5 x^2+28 x+63$
- $y^2=6 x^6+22 x^5+25 x^4+70 x^3+35 x^2+54 x+15$
- $y^2=19 x^6+51 x^5+16 x^4+16 x^3+18 x^2+26 x+13$
- $y^2=62 x^6+2 x^5+41 x^4+41 x^3+55 x^2+40 x+20$
- $y^2=24 x^6+10 x^5+22 x^4+5 x^3+24 x^2+26 x+36$
- $y^2=26 x^6+70 x^5+12 x^4+35 x^3+26 x^2+40 x+39$
- $y^2=53 x^6+47 x^5+13 x^4+35 x^3+31 x^2+6 x+26$
- $y^2=16 x^6+45 x^5+20 x^4+32 x^3+4 x^2+42 x+40$
- $y^2=5 x^6+2 x^5+25 x^4+59 x+68$
- $y^2=35 x^6+14 x^5+33 x^4+58 x+50$
- $y^2=20 x^6+58 x^5+42 x^4+70 x^3+67 x^2+10 x+37$
- $y^2=69 x^6+51 x^5+10 x^4+64 x^3+43 x^2+70 x+46$
- $y^2=4 x^6+25 x^5+29 x^4+43 x^3+26 x^2+48 x+30$
- $y^2=28 x^6+33 x^5+61 x^4+17 x^3+40 x^2+52 x+68$
- $y^2=9 x^6+8 x^5+43 x^4+68 x^3+4 x^2+60 x+34$
- $y^2=63 x^6+56 x^5+17 x^4+50 x^3+28 x^2+65 x+25$
- $y^2=31 x^6+60 x^5+10 x^4+14 x^3+62 x^2+61 x+18$
- $y^2=4 x^6+65 x^5+70 x^4+27 x^3+8 x^2+x+55$
- $y^2=65 x^6+19 x^5+7 x^4+66 x^3+66 x^2+34 x+3$
- $y^2=29 x^6+62 x^5+49 x^4+36 x^3+36 x^2+25 x+21$
- $y^2=15 x^6+58 x^5+16 x^4+18 x^3+16 x^2+18 x+4$
- $y^2=34 x^6+51 x^5+41 x^4+55 x^3+41 x^2+55 x+28$
- $y^2=35 x^6+52 x^5+38 x^4+53 x^2+8 x+6$
- $y^2=2 x^6+53 x^5+52 x^4+38 x^3+32 x^2+30 x+6$
- $y^2=14 x^6+16 x^5+9 x^4+53 x^3+11 x^2+68 x+42$
- $y^2=40 x^6+22 x^5+47 x^4+21 x^3+67 x^2+22 x+44$
- $y^2=67 x^6+12 x^5+45 x^4+5 x^3+43 x^2+12 x+24$
- $y^2=57 x^6+64 x^5+49 x^4+67 x^3+48 x+28$
- $y^2=44 x^6+22 x^5+59 x^4+43 x^3+52 x+54$
- $y^2=56 x^6+34 x^4+3 x^3+x^2+12 x+20$
- $y^2=37 x^6+25 x^4+21 x^3+7 x^2+13 x+69$
- $y^2=63 x^6+69 x^5+12 x^4+66 x^3+15 x^2+26 x+37$
- $y^2=15 x^6+57 x^5+13 x^4+36 x^3+34 x^2+40 x+46$
- $y^2=41 x^6+19 x^5+9 x^4+18 x^3+56 x^2+38 x+39$
- $y^2=3 x^6+62 x^5+63 x^4+55 x^3+37 x^2+53 x+60$
- $y^2=58 x^6+2 x^5+3 x^4+58 x^3+8 x^2+68 x+40$
- $y^2=51 x^6+14 x^5+21 x^4+51 x^3+56 x^2+50 x+67$
- $y^2=39 x^6+24 x^5+7 x^4+27 x^3+48 x^2+63 x+60$
- $y^2=60 x^6+26 x^5+49 x^4+47 x^3+52 x^2+15 x+65$
- $y^2=17 x^6+21 x^5+19 x^4+6 x^3+55 x^2+70 x+44$
- $y^2=48 x^6+5 x^5+62 x^4+42 x^3+30 x^2+64 x+24$
- $y^2=30 x^6+66 x^5+22 x^4+45 x^3+51 x^2+61 x+7$
- $y^2=68 x^6+36 x^5+12 x^4+31 x^3+2 x^2+x+49$
- $y^2=19 x^6+48 x^5+39 x^4+51 x^3+5 x^2+69 x+3$
- $y^2=62 x^6+52 x^5+60 x^4+2 x^3+35 x^2+57 x+21$
- $y^2=47 x^6+38 x^5+37 x^4+51 x^3+9 x^2+65 x+30$
- $y^2=47 x^6+34 x^5+10 x^4+67 x^3+23 x^2+40 x+63$
- $y^2=45 x^6+25 x^5+70 x^4+43 x^3+19 x^2+67 x+15$
- $y^2=34 x^6+39 x^5+46 x^4+10 x^3+58 x^2+16 x+2$
- $y^2=25 x^6+60 x^5+38 x^4+70 x^3+51 x^2+41 x+14$
- $y^2=51 x^6+69 x^5+60 x^4+x^3+57 x^2+62 x+61$
- $y^2=2 x^6+57 x^5+65 x^4+7 x^3+44 x^2+8 x+1$
- $y^2=13 x^6+x^5+23 x^4+70 x^3+23 x^2+61 x+33$
- $y^2=20 x^6+7 x^5+19 x^4+64 x^3+19 x^2+x+18$
- $y^2=3 x^6+12 x^5+58 x^4+61 x^3+18 x^2+69 x$
- $y^2=48 x^6+34 x^5+36 x^4+36 x^3+68 x^2+29 x+39$
- $y^2=52 x^6+25 x^5+39 x^4+39 x^3+50 x^2+61 x+60$
- $y^2=41 x^6+56 x^5+18 x^4+40 x^3+15 x^2+50 x+45$
- $y^2=3 x^6+37 x^5+55 x^4+67 x^3+34 x^2+66 x+31$
- $y^2=60 x^6+x^5+45 x^4+55 x^3+37 x+40$
- $y^2=65 x^6+7 x^5+31 x^4+30 x^3+46 x+67$
- $y^2=15 x^6+34 x^5+57 x^4+24 x^3+18 x^2+38 x+37$
- $y^2=34 x^6+25 x^5+44 x^4+26 x^3+55 x^2+53 x+46$
- $y^2=52 x^6+18 x^5+4 x^4+52 x^3+70 x^2+x+25$
- $y^2=37 x^6+7 x^5+44 x^4+42 x^3+5 x^2+7 x+3$
- $y^2=55 x^6+20 x^5+34 x^4+64 x^3+42 x^2+13 x+56$
- $y^2=30 x^6+69 x^5+25 x^4+22 x^3+10 x^2+20 x+37$
- $y^2=20 x^6+23 x^5+34 x^4+35 x^3+12 x^2+x+23$
- $y^2=69 x^6+19 x^5+25 x^4+32 x^3+13 x^2+7 x+19$
- $y^2=x^6+46 x^5+21 x^4+59 x^3+60 x^2+42 x+39$
- $y^2=7 x^6+38 x^5+5 x^4+58 x^3+65 x^2+10 x+60$
- $y^2=65 x^6+28 x^5+2 x^4+47 x^3+48 x^2+28 x+39$
- $y^2=29 x^6+54 x^5+14 x^4+45 x^3+52 x^2+54 x+60$
- $y^2=5 x^6+5 x^5+8 x^4+7 x^3+70 x^2+34 x+32$
- $y^2=35 x^6+35 x^5+56 x^4+49 x^3+64 x^2+25 x+11$
- $y^2=40 x^6+64 x^5+59 x^4+6 x^3+10 x^2+32 x+52$
- $y^2=67 x^6+22 x^5+58 x^4+42 x^3+70 x^2+11 x+9$
- $y^2=44 x^6+9 x^5+32 x^4+70 x^3+52 x^2+40 x+1$
- $y^2=24 x^6+63 x^5+11 x^4+64 x^3+9 x^2+67 x+7$
- $y^2=30 x^6+56 x^5+16 x^4+4 x^3+4 x^2+20 x+1$
- $y^2=68 x^6+37 x^5+41 x^4+28 x^3+28 x^2+69 x+7$
- $y^2=52 x^6+59 x^5+26 x^4+57 x^3+9 x^2+47 x+32$
- $y^2=9 x^6+58 x^5+40 x^4+44 x^3+63 x^2+45 x+11$
- $y^2=12 x^6+19 x^5+44 x^4+38 x^3+67 x^2+52 x+21$
- $y^2=13 x^6+62 x^5+24 x^4+53 x^3+43 x^2+9 x+5$
- $y^2=10 x^6+32 x^5+29 x^4+25 x^3+24 x^2+10 x+70$
- $y^2=70 x^6+11 x^5+61 x^4+33 x^3+26 x^2+70 x+64$
- $y^2=55 x^6+49 x^5+25 x^4+10 x^3+6 x^2+21 x+26$
- $y^2=30 x^6+59 x^5+33 x^4+70 x^3+42 x^2+5 x+40$
- $y^2=53 x^6+51 x^5+57 x^4+20 x^3+36 x^2+37 x+32$
- $y^2=16 x^6+2 x^5+44 x^4+69 x^3+39 x^2+46 x+11$
- $y^2=23 x^6+5 x^5+55 x^4+17 x^3+5 x^2+8 x+43$
- $y^2=19 x^6+35 x^5+30 x^4+48 x^3+35 x^2+56 x+17$
- $y^2=15 x^6+56 x^5+64 x^4+69 x^3+48 x^2+30 x+68$
- $y^2=34 x^6+37 x^5+22 x^4+57 x^3+52 x^2+68 x+50$
- $y^2=51 x^6+18 x^5+54 x^4+61 x^3+60 x^2+19 x+41$
- $y^2=22 x^5+66 x^4+31 x^3+51 x^2+46 x+57$
- $y^2=54 x^6+43 x^5+68 x^4+67 x^3+6 x^2+58 x+4$
- $y^2=23 x^6+17 x^5+50 x^4+43 x^3+42 x^2+51 x+28$
- $y^2=4 x^6+37 x^5+31 x^4+55 x^3+17 x^2+67 x+70$
- $y^2=23 x^6+44 x^5+44 x^4+25 x^3+6 x^2+68 x+61$
- $y^2=19 x^6+24 x^5+24 x^4+33 x^3+42 x^2+50 x+1$
- $y^2=42 x^6+22 x^5+15 x^4+52 x^3+44 x^2+51 x+39$
- $y^2=10 x^6+12 x^5+34 x^4+9 x^3+24 x^2+2 x+60$
- $y^2=30 x^6+26 x^5+52 x^4+14 x^2+46 x+67$
- $y^2=68 x^6+40 x^5+9 x^4+27 x^2+38 x+43$
- $y^2=33 x^6+56 x^5+53 x^4+47 x^3+46 x^2+39 x+66$
- $y^2=18 x^6+37 x^5+16 x^4+45 x^3+38 x^2+60 x+36$
- $y^2=38 x^6+64 x^5+43 x^4+30 x^3+45 x^2+13 x+50$
- $y^2=53 x^6+22 x^5+17 x^4+68 x^3+31 x^2+20 x+66$
- $y^2=30 x^6+54 x^5+50 x^4+60 x^3+43 x^2+39 x+25$
- $y^2=68 x^6+23 x^5+66 x^4+65 x^3+17 x^2+60 x+33$
- $y^2=59 x^6+51 x^5+x^4+60 x^3+22 x^2+46 x+10$
- $y^2=2 x^6+3 x^5+66 x^4+67 x^3+51 x^2+62 x+27$
- $y^2=14 x^6+21 x^5+36 x^4+43 x^3+2 x^2+8 x+47$
- $y^2=27 x^6+50 x^5+4 x^4+51 x^3+2 x^2+2 x+6$
- $y^2=47 x^6+66 x^5+28 x^4+2 x^3+14 x^2+14 x+42$
- $y^2=64 x^6+40 x^5+47 x^4+59 x^3+41 x^2+25 x+36$
- $y^2=22 x^6+67 x^5+45 x^4+58 x^3+3 x^2+33 x+39$
- $y^2=53 x^6+44 x^5+22 x^4+34 x^3+37 x^2+68 x+16$
- $y^2=16 x^6+24 x^5+12 x^4+25 x^3+46 x^2+50 x+41$
- $y^2=50 x^6+14 x^5+13 x^4+32 x^3+65 x^2+20 x+14$
- $y^2=66 x^6+27 x^5+20 x^4+11 x^3+29 x^2+69 x+27$
- $y^2=40 x^6+69 x^5+28 x^4+x^3+61 x^2+35 x+47$
- $y^2=64 x^6+49 x^5+16 x^4+61 x^3+51 x^2+15 x+49$
- $y^2=22 x^6+59 x^5+41 x^4+x^3+2 x^2+34 x+59$
- $y^2=15 x^6+10 x^5+10 x^4+63 x^3+60 x^2+60 x+13$
- $y^2=34 x^6+70 x^5+70 x^4+15 x^3+65 x^2+65 x+20$
- $y^2=16 x^6+19 x^5+58 x^4+70 x^3+57 x^2+34 x+7$
- $y^2=41 x^6+62 x^5+51 x^4+64 x^3+44 x^2+25 x+49$
- $y^2=70 x^6+34 x^5+22 x^4+22 x^3+21 x^2+52 x+63$
- $y^2=64 x^6+25 x^5+12 x^4+12 x^3+5 x^2+9 x+15$
- $y^2=42 x^6+16 x^5+15 x^4+49 x^3+6 x^2+57 x+49$
- $y^2=12 x^6+5 x^5+2 x^4+57 x^3+26 x^2+22 x+16$
- $y^2=41 x^6+61 x^5+4 x^4+38 x^3+70 x^2+21 x+28$
- $y^2=3 x^6+x^5+28 x^4+53 x^3+64 x^2+5 x+54$
- $y^2=30 x^6+13 x^5+66 x^4+52 x^3+50 x^2+x+25$
- $y^2=68 x^6+20 x^5+36 x^4+9 x^3+66 x^2+7 x+33$
- $y^2=29 x^6+28 x^5+69 x^4+34 x^3+4 x^2+68 x+7$
- $y^2=61 x^6+54 x^5+57 x^4+25 x^3+28 x^2+50 x+49$
- $y^2=7 x^6+2 x^5+58 x^4+49 x^3+9 x^2+32 x+51$
- $y^2=49 x^6+14 x^5+51 x^4+59 x^3+63 x^2+11 x+2$
- $y^2=37 x^6+12 x^5+39 x^4+60 x^2+51 x+53$
- $y^2=12 x^6+34 x^5+64 x^4+65 x^3+8 x^2+58 x+38$
- $y^2=13 x^6+25 x^5+22 x^4+29 x^3+56 x^2+51 x+53$
- $y^2=22 x^6+11 x^5+18 x^4+22 x^3+45 x^2+47 x+40$
- $y^2=12 x^6+6 x^5+55 x^4+12 x^3+31 x^2+45 x+67$
- $y^2=18 x^6+55 x^5+22 x^4+33 x^3+21 x^2+67 x+29$
- $y^2=19 x^6+49 x^5+9 x^4+53 x^3+47 x^2+13 x+14$
- $y^2=62 x^6+59 x^5+63 x^4+16 x^3+45 x^2+20 x+27$
- $y^2=29 x^6+44 x^5+21 x^4+64 x^3+34 x^2+31 x+11$
- $y^2=61 x^6+24 x^5+5 x^4+22 x^3+25 x^2+4 x+6$
- $y^2=66 x^6+51 x^5+69 x^4+47 x^3+28 x^2+32 x+40$
- $y^2=36 x^6+2 x^5+57 x^4+45 x^3+54 x^2+11 x+67$
- $y^2=30 x^6+68 x^5+60 x^4+51 x^3+48 x^2+56 x+34$
- $y^2=68 x^6+50 x^5+65 x^4+2 x^3+52 x^2+37 x+25$
- $y^2=19 x^6+30 x^5+34 x^4+2 x^3+70 x^2+41 x+37$
- $y^2=62 x^6+68 x^5+25 x^4+14 x^3+64 x^2+3 x+46$
- $y^2=15 x^6+38 x^5+26 x^4+42 x^3+47 x^2+22 x$
- $y^2=34 x^6+53 x^5+40 x^4+10 x^3+45 x^2+12 x$
- $y^2=16 x^6+4 x^5+58 x^4+9 x^3+26 x^2+15 x+38$
- $y^2=38 x^6+21 x^5+30 x^4+8 x^3+31 x^2+64 x+62$
- $y^2=53 x^6+5 x^5+68 x^4+56 x^3+4 x^2+22 x+8$
- $y^2=13 x^6+62 x^5+54 x^4+65 x^3+4 x^2+6 x+57$
- $y^2=20 x^6+8 x^5+23 x^4+29 x^3+28 x^2+42 x+44$
- $y^2=55 x^6+68 x^5+41 x^4+21 x^3+31 x^2+18 x+62$
- $y^2=30 x^6+50 x^5+3 x^4+5 x^3+4 x^2+55 x+8$
- $y^2=48 x^6+20 x^5+7 x^4+40 x^3+21 x^2+21 x+39$
- $y^2=31 x^6+53 x^5+46 x^4+66 x^3+51 x^2+32 x+1$
- $y^2=4 x^6+16 x^5+38 x^4+36 x^3+2 x^2+11 x+7$
- $y^2=8 x^6+56 x^5+18 x^4+61 x^3+67 x^2+20 x+2$
- $y^2=56 x^6+37 x^5+55 x^4+x^3+43 x^2+69 x+14$
- $y^2=38 x^6+8 x^5+19 x^4+22 x^3+26 x^2+66 x+56$
- $y^2=51 x^6+67 x^5+46 x^3+26 x^2+58 x+2$
- $y^2=2 x^6+43 x^5+38 x^3+40 x^2+51 x+14$
- $y^2=24 x^6+29 x^5+45 x^4+14 x^3+36 x^2+18 x+3$
- $y^2=26 x^6+61 x^5+31 x^4+27 x^3+39 x^2+55 x+21$
- $y^2=43 x^6+38 x^5+53 x^4+41 x^3+26 x^2+13 x+47$
- $y^2=17 x^6+53 x^5+16 x^4+3 x^3+40 x^2+20 x+45$
- $y^2=4 x^6+67 x^5+22 x^4+65 x^3+9 x^2+9 x+48$
- $y^2=28 x^6+43 x^5+12 x^4+29 x^3+63 x^2+63 x+52$
- $y^2=45 x^6+51 x^5+48 x^4+9 x^3+61 x^2+33 x+37$
- $y^2=57 x^6+59 x^4+40 x^3+61 x^2+23 x+37$
- $y^2=44 x^6+58 x^4+67 x^3+x^2+19 x+46$
- $y^2=19 x^6+68 x^5+12 x^4+20 x^3+49 x^2+64 x+17$
- $y^2=62 x^6+50 x^5+13 x^4+69 x^3+59 x^2+22 x+48$
- $y^2=50 x^6+40 x^5+52 x^4+12 x^3+25 x^2+24 x+32$
- $y^2=66 x^6+67 x^5+9 x^4+13 x^3+33 x^2+26 x+11$
- $y^2=66 x^6+53 x^5+28 x^4+56 x^2+54 x+62$
- $y^2=36 x^6+16 x^5+54 x^4+37 x^2+23 x+8$
- $y^2=16 x^6+2 x^5+32 x^4+42 x^3+8 x^2+53 x+66$
- $y^2=41 x^6+14 x^5+11 x^4+10 x^3+56 x^2+16 x+36$
- $y^2=9 x^6+56 x^5+14 x^4+51 x^3+9 x^2+21 x+30$
- $y^2=63 x^6+37 x^5+27 x^4+2 x^3+63 x^2+5 x+68$
- $y^2=11 x^6+64 x^5+66 x^4+27 x^3+15 x^2+58 x+47$
- $y^2=70 x^6+10 x^5+56 x^4+16 x^3+61 x^2+2 x+26$
- $y^2=64 x^6+70 x^5+37 x^4+41 x^3+x^2+14 x+40$
- $y^2=59 x^6+47 x^5+22 x^4+31 x^3+19 x^2+8 x+1$
- $y^2=58 x^6+45 x^5+12 x^4+4 x^3+62 x^2+56 x+7$
- $y^2=8 x^6+37 x^5+61 x^4+48 x^3+34 x^2+65 x+14$
- $y^2=56 x^6+46 x^5+x^4+52 x^3+25 x^2+29 x+27$
- $y^2=7 x^6+15 x^5+39 x^4+32 x^3+59 x^2+19 x$
- $y^2=49 x^6+34 x^5+60 x^4+11 x^3+58 x^2+62 x$
- $y^2=8 x^6+20 x^5+44 x^4+52 x^3+48 x^2+28 x+14$
- $y^2=56 x^6+69 x^5+24 x^4+9 x^3+52 x^2+54 x+27$
- $y^2=33 x^6+48 x^5+4 x^4+19 x^3+16 x^2+64 x+48$
- $y^2=18 x^6+52 x^5+28 x^4+62 x^3+41 x^2+22 x+52$
- $y^2=26 x^5+18 x^4+11 x^3+32 x^2+38 x+2$
- $y^2=52 x^6+60 x^4+4 x^3+31 x^2+40 x+60$
- $y^2=9 x^6+65 x^4+28 x^3+4 x^2+67 x+65$
- $y^2=32 x^6+20 x^5+46 x^4+43 x^3+12 x^2+66 x+12$
- $y^2=11 x^6+69 x^5+38 x^4+17 x^3+13 x^2+36 x+13$
- $y^2=12 x^6+57 x^5+53 x^4+19 x^3+41 x^2+8 x+1$
- $y^2=13 x^6+44 x^5+16 x^4+62 x^3+3 x^2+56 x+7$
- $y^2=40 x^6+5 x^5+30 x^4+52 x^3+55 x^2+63 x+6$
- $y^2=67 x^6+35 x^5+68 x^4+9 x^3+30 x^2+15 x+42$
- $y^2=56 x^6+59 x^5+62 x^4+30 x^3+17 x^2+49 x+41$
- $y^2=37 x^6+58 x^5+8 x^4+68 x^3+48 x^2+59 x+3$
- $y^2=53 x^6+63 x^5+13 x^4+25 x^3+54 x^2+24 x+17$
- $y^2=7 x^6+21 x^5+19 x^4+54 x^3+60 x^2+55 x+47$
- $y^2=49 x^6+5 x^5+62 x^4+23 x^3+65 x^2+30 x+45$
- $y^2=53 x^6+14 x^5+26 x^4+38 x^3+16 x^2+21 x+25$
- $y^2=16 x^6+27 x^5+40 x^4+53 x^3+41 x^2+5 x+33$
- $y^2=2 x^6+12 x^5+68 x^4+3 x^3+15 x^2+41 x+6$
- $y^2=24 x^6+34 x^5+19 x^4+14 x^3+14 x^2+69 x+31$
- $y^2=4 x^6+70 x^5+19 x^4+27 x^3+13 x^2+48 x+46$
- $y^2=28 x^6+64 x^5+62 x^4+47 x^3+20 x^2+52 x+38$
- $y^2=37 x^6+15 x^5+67 x^4+43 x^3+27 x^2+46 x+49$
- $y^2=46 x^6+34 x^5+43 x^4+17 x^3+47 x^2+38 x+59$
- $y^2=39 x^6+9 x^5+19 x^4+2 x^3+44 x^2+27 x+67$
- $y^2=60 x^6+63 x^5+62 x^4+14 x^3+24 x^2+47 x+43$
- $y^2=65 x^6+45 x^5+42 x^4+27 x^3+34 x^2+5 x+25$
- $y^2=15 x^6+4 x^5+12 x^4+46 x^3+25 x^2+2 x+11$
- $y^2=34 x^6+28 x^5+13 x^4+38 x^3+33 x^2+14 x+6$
- $y^2=33 x^6+64 x^5+70 x^4+59 x^3+54 x^2+10 x+27$
- $y^2=35 x^5+42 x^4+30 x^3+52 x^2+45 x+1$
- $y^2=32 x^5+10 x^4+68 x^3+9 x^2+31 x+7$
- $y^2=12 x^6+9 x^5+51 x^4+52 x^3+35 x^2+24 x+55$
- $y^2=13 x^6+63 x^5+2 x^4+9 x^3+32 x^2+26 x+30$
- $y^2=22 x^6+68 x^5+70 x^4+68 x^3+19 x^2+66 x+70$
- $y^2=12 x^6+50 x^5+64 x^4+50 x^3+62 x^2+36 x+64$
- $y^2=15 x^6+3 x^5+12 x^4+25 x^3+53 x^2+48 x+27$
- $y^2=34 x^6+21 x^5+13 x^4+33 x^3+16 x^2+52 x+47$
- $y^2=12 x^6+24 x^5+64 x^4+58 x^3+17 x^2+61 x+63$
- $y^2=13 x^6+26 x^5+22 x^4+51 x^3+48 x^2+x+15$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-53})\). |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.cs 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-106}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.a_acs | $4$ | (not in LMFDB) |
2.71.am_cu | $8$ | (not in LMFDB) |
2.71.m_cu | $8$ | (not in LMFDB) |