L(s) = 1 | − 5-s + 7-s − 2·11-s + 10·17-s + 4·19-s − 2·23-s + 5·25-s − 10·29-s − 35-s + 10·37-s − 3·41-s + 7·43-s + 3·47-s + 12·53-s + 2·55-s − 59-s + 6·61-s − 4·67-s + 16·71-s + 20·73-s − 2·77-s + 3·79-s + 13·83-s − 10·85-s − 12·89-s − 4·95-s + 14·97-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.377·7-s − 0.603·11-s + 2.42·17-s + 0.917·19-s − 0.417·23-s + 25-s − 1.85·29-s − 0.169·35-s + 1.64·37-s − 0.468·41-s + 1.06·43-s + 0.437·47-s + 1.64·53-s + 0.269·55-s − 0.130·59-s + 0.768·61-s − 0.488·67-s + 1.89·71-s + 2.34·73-s − 0.227·77-s + 0.337·79-s + 1.42·83-s − 1.08·85-s − 1.27·89-s − 0.410·95-s + 1.42·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5143824 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5143824 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.911745990\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.911745990\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.260064518203329531618875526483, −8.915740154131818643915087986886, −8.097206928770103965389767492822, −8.013279859638913198538110714825, −7.83572905277717634772146245286, −7.46610698979839689644916567187, −6.82159292411992422863343958801, −6.75630883234863414172488438950, −5.81537288188626637384075543930, −5.60171153629481598290722677962, −5.36464691720324482658378196311, −5.01655764935268286998097405800, −4.15371081928687495788610105494, −4.07460364697784263766479694543, −3.29798830095274976485712066235, −3.20722069943381916092981797082, −2.42784810832185561248659697142, −1.96782380358481909452475251995, −1.02368567540450451274638806551, −0.74362518436616863624003236738,
0.74362518436616863624003236738, 1.02368567540450451274638806551, 1.96782380358481909452475251995, 2.42784810832185561248659697142, 3.20722069943381916092981797082, 3.29798830095274976485712066235, 4.07460364697784263766479694543, 4.15371081928687495788610105494, 5.01655764935268286998097405800, 5.36464691720324482658378196311, 5.60171153629481598290722677962, 5.81537288188626637384075543930, 6.75630883234863414172488438950, 6.82159292411992422863343958801, 7.46610698979839689644916567187, 7.83572905277717634772146245286, 8.013279859638913198538110714825, 8.097206928770103965389767492822, 8.915740154131818643915087986886, 9.260064518203329531618875526483