Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 3 x - 32 x^{2} + 123 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.241933578988$, $\pm0.908600245655$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-155})\) |
Galois group: | $C_2^2$ |
Jacobians: | $44$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1776$ | $2706624$ | $4797501696$ | $7990484546304$ | $13424967794334576$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $45$ | $1609$ | $69606$ | $2827729$ | $115876125$ | $4750145998$ | $194753394405$ | $7984923446689$ | $327381872971446$ | $13422659475365929$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=23 x^6+11 x^5+26 x^4+15 x^3+18 x^2+4 x+24$
- $y^2=25 x^6+10 x^5+4 x^4+39 x^3+40 x^2+37 x+15$
- $y^2=10 x^6+6 x^5+34 x^4+8 x^3+37 x^2+27 x+3$
- $y^2=11 x^6+14 x^5+40 x^3+13 x^2+11 x+11$
- $y^2=38 x^6+9 x^5+5 x^4+32 x^3+11 x^2+11 x+1$
- $y^2=33 x^6+11 x^5+16 x^4+7 x^3+18 x^2+38 x+30$
- $y^2=25 x^6+32 x^5+18 x^4+9 x^3+34 x^2+37 x+17$
- $y^2=5 x^5+16 x^3+16 x^2+x+28$
- $y^2=23 x^6+19 x^5+36 x^4+8 x^3+11 x^2+9 x+12$
- $y^2=12 x^6+13 x^5+9 x^4+16 x^3+38 x^2+22 x+33$
- $y^2=28 x^6+37 x^5+35 x^4+4 x^3+9 x^2+10$
- $y^2=12 x^6+4 x^5+20 x^4+20 x^3+36 x^2+6 x+36$
- $y^2=5 x^6+26 x^5+11 x^4+29 x^3+35 x^2+29 x+2$
- $y^2=x^6+38 x^5+40 x^4+23 x^3+29 x^2+9 x+1$
- $y^2=22 x^6+15 x^5+20 x^4+26 x^3+9 x^2+40 x+37$
- $y^2=7 x^6+24 x^5+16 x^4+5 x^3+18 x^2+34 x+9$
- $y^2=24 x^6+39 x^5+11 x^4+31 x^2+21 x+26$
- $y^2=39 x^6+32 x^5+9 x^4+38 x^3+x^2+24 x+3$
- $y^2=x^6+15 x^5+2 x^4+21 x^3+15 x^2+12 x+36$
- $y^2=4 x^6+38 x^5+2 x^4+18 x^3+24 x^2+25 x+26$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{3}}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-155})\). |
The base change of $A$ to $\F_{41^{3}}$ is 1.68921.ne 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-155}) \)$)$ |
Base change
This is a primitive isogeny class.