Properties

Label 2.13.a_an
Base field $\F_{13}$
Dimension $2$
$p$-rank $0$
Ordinary no
Supersingular yes
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable no
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
L-polynomial:  $1 - 13 x^{2} + 169 x^{4}$
Frobenius angles:  $\pm0.166666666667$, $\pm0.833333333333$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-13})\)
Galois group:  $C_2^2$
Jacobians:  $0$

This isogeny class is simple but not geometrically simple, primitive, not ordinary, and supersingular.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $157$ $24649$ $4831204$ $825470361$ $137858120557$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $14$ $144$ $2198$ $28900$ $371294$ $4835598$ $62748518$ $815787844$ $10604499374$ $137857749264$

Jacobians and polarizations

This isogeny class is not principally polarizable, and therefore does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{13^{6}}$.

Endomorphism algebra over $\F_{13}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-13})\).
Endomorphism algebra over $\overline{\F}_{13}$
The base change of $A$ to $\F_{13^{6}}$ is 1.4826809.gna 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $13$ and $\infty$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.13.a_ba$3$(not in LMFDB)
2.13.a_n$4$(not in LMFDB)
2.13.a_aba$12$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.13.a_ba$3$(not in LMFDB)
2.13.a_n$4$(not in LMFDB)
2.13.a_aba$12$(not in LMFDB)
2.13.a_n$12$(not in LMFDB)
2.13.a_a$24$(not in LMFDB)