Properties

Label 2.23.c_at
Base field $\F_{23}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable no
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $2$
L-polynomial:  $1 + 2 x - 19 x^{2} + 46 x^{3} + 529 x^{4}$
Frobenius angles:  $\pm0.233529485063$, $\pm0.900196151729$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-22})\)
Galois group:  $C_2^2$
Jacobians:  $0$
Isomorphism classes:  14

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $559$ $258817$ $151240804$ $78508772329$ $41454856941199$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $26$ $488$ $12428$ $280548$ $6440746$ $148050758$ $3404709334$ $78310924036$ $1801147565204$ $41426517718568$

Jacobians and polarizations

This isogeny class is not principally polarizable, and therefore does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23^{3}}$.

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-22})\).
Endomorphism algebra over $\overline{\F}_{23}$
The base change of $A$ to $\F_{23^{3}}$ is 1.12167.fa 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-22}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.23.ac_at$2$(not in LMFDB)
2.23.ae_by$3$(not in LMFDB)
2.23.a_bq$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.23.ac_at$2$(not in LMFDB)
2.23.ae_by$3$(not in LMFDB)
2.23.a_bq$6$(not in LMFDB)
2.23.e_by$6$(not in LMFDB)
2.23.a_abq$12$(not in LMFDB)