Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + x - 58 x^{2} + 59 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.187401536273$, $\pm0.854068202940$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-235})\) |
Galois group: | $C_2^2$ |
Jacobians: | $22$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3484$ | $11720176$ | $42253269136$ | $146911984233664$ | $511128985948200724$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $61$ | $3365$ | $205732$ | $12124089$ | $714941411$ | $42181293206$ | $2488650095489$ | $146830458622129$ | $8662995612678268$ | $511116752163579125$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 22 curves (of which all are hyperelliptic):
- $y^2=55 x^6+13 x^5+4 x^4+41 x^3+26 x^2+31 x+30$
- $y^2=11 x^6+36 x^5+32 x^4+11 x^3+4 x^2+51 x+3$
- $y^2=34 x^6+25 x^5+49 x^4+49 x^3+16 x^2+14 x+12$
- $y^2=51 x^6+8 x^5+46 x^4+42 x^3+26 x^2+55 x+18$
- $y^2=11 x^6+12 x^5+8 x^4+x^3+49 x^2+38 x+38$
- $y^2=18 x^6+52 x^5+55 x^4+42 x^3+41 x^2+30 x+16$
- $y^2=14 x^6+14 x^5+20 x^4+28 x^3+x^2+42 x+25$
- $y^2=58 x^6+x^5+3 x^4+53 x^3+51 x^2+24 x+46$
- $y^2=36 x^6+19 x^5+57 x^4+29 x^3+14 x^2+24 x+47$
- $y^2=9 x^6+30 x^5+39 x^4+5 x^3+35 x^2+55 x+13$
- $y^2=21 x^6+31 x^5+55 x^4+32 x^3+5 x^2+3 x+54$
- $y^2=16 x^6+48 x^5+9 x^4+5 x^3+12 x^2+55 x+40$
- $y^2=14 x^6+57 x^5+43 x^4+22 x^3+56 x^2+36 x+24$
- $y^2=52 x^6+13 x^5+48 x^4+48 x^3+26 x^2+33 x+46$
- $y^2=47 x^6+35 x^5+46 x^4+16 x^3+10 x^2+17 x+35$
- $y^2=55 x^6+29 x^5+12 x^4+11 x^3+53 x^2+15 x+13$
- $y^2=52 x^6+58 x^4+18 x^3+11 x^2+24 x+20$
- $y^2=10 x^5+7 x^4+50 x^3+57 x^2+19 x+34$
- $y^2=58 x^6+36 x^5+28 x^4+14 x^3+30 x^2+22 x+34$
- $y^2=49 x^6+50 x^5+28 x^4+53 x^3+12 x^2+21 x+54$
- $y^2=53 x^6+47 x^5+19 x^4+35 x^3+13 x^2+3 x+45$
- $y^2=56 x^6+42 x^5+52 x^4+17 x^3+35 x^2+11 x+29$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{3}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-235})\). |
The base change of $A$ to $\F_{59^{3}}$ is 1.205379.gu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-235}) \)$)$ |
Base change
This is a primitive isogeny class.