L(s) = 1 | + 6·9-s − 2·11-s − 8·19-s + 4·29-s + 16·31-s + 20·41-s − 2·49-s + 8·59-s − 4·61-s + 32·79-s + 27·81-s + 12·89-s − 12·99-s − 20·101-s + 4·109-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s − 48·171-s + ⋯ |
L(s) = 1 | + 2·9-s − 0.603·11-s − 1.83·19-s + 0.742·29-s + 2.87·31-s + 3.12·41-s − 2/7·49-s + 1.04·59-s − 0.512·61-s + 3.60·79-s + 3·81-s + 1.27·89-s − 1.20·99-s − 1.99·101-s + 0.383·109-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s − 3.67·171-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4840000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4840000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.209945727\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.209945727\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.173272638906922952524654856104, −9.045924795057530324134240981637, −8.201112689554953730397912253755, −8.187080981213756538563395227620, −7.60170240171437640692729771104, −7.56490432803600403795294767739, −6.64546130247805982764041713866, −6.58147224282461997045853947005, −6.38576810848960751697828259561, −5.78284919084614804057441066895, −5.08670282851686742058383987165, −4.78788613270423491250993019853, −4.24930679036380430135448509784, −4.22966920562439457284578760930, −3.64322421927850082378939775402, −2.81849396306739841050034806558, −2.41471767067084116433035817825, −2.03003099452872654042095021579, −1.13433667192347341342230980392, −0.73052228231033222656394211521,
0.73052228231033222656394211521, 1.13433667192347341342230980392, 2.03003099452872654042095021579, 2.41471767067084116433035817825, 2.81849396306739841050034806558, 3.64322421927850082378939775402, 4.22966920562439457284578760930, 4.24930679036380430135448509784, 4.78788613270423491250993019853, 5.08670282851686742058383987165, 5.78284919084614804057441066895, 6.38576810848960751697828259561, 6.58147224282461997045853947005, 6.64546130247805982764041713866, 7.56490432803600403795294767739, 7.60170240171437640692729771104, 8.187080981213756538563395227620, 8.201112689554953730397912253755, 9.045924795057530324134240981637, 9.173272638906922952524654856104