| L(s) = 1 | + 3-s − 4·5-s + 7-s − 3·11-s + 5·13-s − 4·15-s + 17-s − 5·19-s + 21-s − 2·23-s + 2·25-s − 27-s − 29-s − 4·31-s − 3·33-s − 4·35-s − 2·37-s + 5·39-s − 5·41-s − 2·43-s − 6·47-s + 51-s − 18·53-s + 12·55-s − 5·57-s + 6·59-s − 13·61-s + ⋯ |
| L(s) = 1 | + 0.577·3-s − 1.78·5-s + 0.377·7-s − 0.904·11-s + 1.38·13-s − 1.03·15-s + 0.242·17-s − 1.14·19-s + 0.218·21-s − 0.417·23-s + 2/5·25-s − 0.192·27-s − 0.185·29-s − 0.718·31-s − 0.522·33-s − 0.676·35-s − 0.328·37-s + 0.800·39-s − 0.780·41-s − 0.304·43-s − 0.875·47-s + 0.140·51-s − 2.47·53-s + 1.61·55-s − 0.662·57-s + 0.781·59-s − 1.66·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4769856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4769856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.01164799893\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.01164799893\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.227789365737865995697925123338, −8.568653312693738708545312248012, −8.380009880467043728357735390085, −8.120343403412617923581997239299, −7.927847034534505102612872080206, −7.38786032340618359287146298779, −7.21116622257529093826410447669, −6.39016575840919294836552564822, −6.35774447924758112027462810385, −5.53612321073375945555934117878, −5.41279480621732909387282247274, −4.51933285665320538382649467693, −4.42779789062125074069070629527, −3.86747194683515132857045520071, −3.57107461380141079247859925308, −3.09060196927767617518880475427, −2.66930837093821202355169454721, −1.70702843108980324869324587382, −1.52263685450389964913780832738, −0.03542177782556320914266792734,
0.03542177782556320914266792734, 1.52263685450389964913780832738, 1.70702843108980324869324587382, 2.66930837093821202355169454721, 3.09060196927767617518880475427, 3.57107461380141079247859925308, 3.86747194683515132857045520071, 4.42779789062125074069070629527, 4.51933285665320538382649467693, 5.41279480621732909387282247274, 5.53612321073375945555934117878, 6.35774447924758112027462810385, 6.39016575840919294836552564822, 7.21116622257529093826410447669, 7.38786032340618359287146298779, 7.927847034534505102612872080206, 8.120343403412617923581997239299, 8.380009880467043728357735390085, 8.568653312693738708545312248012, 9.227789365737865995697925123338