Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 9 x + 53 x^{2} )^{2}$ |
| $1 + 18 x + 187 x^{2} + 954 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.712106452697$, $\pm0.712106452697$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $40$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3969$ | $8037225$ | $21956126976$ | $62338525475625$ | $174881005122944169$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $2860$ | $147474$ | $7900468$ | $418180032$ | $22163971030$ | $1174715470224$ | $62259672113188$ | $3299763526975242$ | $174887471918758300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=36 x^6+41 x^5+39 x^4+47 x^3+21 x^2+26 x+11$
- $y^2=46 x^6+5 x^5+39 x^4+30 x^3+22 x^2+21 x+25$
- $y^2=38 x^6+3 x^5+43 x^4+12 x^3+38 x^2+20 x+9$
- $y^2=43 x^6+26 x^5+7 x^4+9 x^3+9 x^2+30 x+37$
- $y^2=37 x^6+40 x^5+18 x^4+2 x^3+5 x^2+43 x+7$
- $y^2=41 x^6+9 x^5+52 x^4+20 x^3+15 x^2+11 x+8$
- $y^2=30 x^6+3 x^5+18 x^4+23 x^3+26 x^2+x+12$
- $y^2=11 x^6+36 x^5+33 x^4+31 x^3+14 x^2+24 x+9$
- $y^2=52 x^6+47 x^5+15 x^4+41 x^3+38 x^2+47 x+1$
- $y^2=52 x^6+38 x^5+34 x^4+23 x^3+30 x^2+25 x+42$
- $y^2=49 x^6+35 x^5+37 x^4+45 x^3+25 x^2+31 x+15$
- $y^2=44 x^6+24 x^5+45 x^4+31 x^3+36 x^2+8 x+6$
- $y^2=14 x^6+46 x^5+46 x^4+52 x^3+15 x^2+36 x+18$
- $y^2=30 x^6+5 x^5+44 x^4+22 x^3+29 x^2+12 x+33$
- $y^2=16 x^6+x^5+46 x^4+33 x^3+25 x^2+16 x+17$
- $y^2=10 x^6+9 x^5+11 x^4+x^3+42 x^2+9 x+43$
- $y^2=7 x^6+23 x^5+21 x^4+47 x^3+35 x^2+5 x+1$
- $y^2=52 x^6+23 x^4+9 x^3+22 x^2+9$
- $y^2=13 x^6+32 x^5+44 x^4+22 x^3+6 x^2+26 x+4$
- $y^2=4 x^6+48 x^5+19 x^4+46 x^3+19 x^2+48 x+4$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.j 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-131}) \)$)$ |
Base change
This is a primitive isogeny class.