Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + x - 28 x^{2} + 29 x^{3} + 841 x^{4}$ |
| Frobenius angles: | $\pm0.196263626344$, $\pm0.862930293010$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{-115})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $14$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $844$ | $661696$ | $599074576$ | $501356472064$ | $420790525060924$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $31$ | $785$ | $24562$ | $708849$ | $20515211$ | $594906086$ | $17249717159$ | $500247453889$ | $14507134663258$ | $420707208769625$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=16 x^6+21 x^5+22 x^4+7 x^3+9 x^2+4 x+26$
- $y^2=20 x^6+15 x^5+25 x^4+7 x^3+12 x^2+19 x+13$
- $y^2=28 x^6+5 x^5+22 x^4+27 x^3+22 x^2+7 x+5$
- $y^2=8 x^6+19 x^5+28 x^4+18 x^3+26 x^2+19 x+23$
- $y^2=17 x^6+19 x^5+9 x^4+10 x^3+5 x^2+11 x+9$
- $y^2=13 x^6+27 x^5+x^4+25 x^3+20 x^2+8 x+22$
- $y^2=17 x^6+x^5+23 x^4+26 x^3+17 x^2+13 x+7$
- $y^2=5 x^6+15 x^5+x^3+26 x^2+x+10$
- $y^2=2 x^6+24 x^5+21 x^4+3 x^3+13 x^2+24 x+5$
- $y^2=x^6+10 x^5+9 x^4+26 x^3+11 x^2+2 x$
- $y^2=11 x^6+16 x^5+8 x^4+13 x^3+10 x^2+4 x+25$
- $y^2=27 x^5+20 x^4+25 x^3+20 x^2+x+13$
- $y^2=6 x^6+27 x^5+x^3+24 x^2+16$
- $y^2=6 x^6+13 x^5+6 x^4+3 x^3+26 x^2+2 x+5$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{3}}$.
Endomorphism algebra over $\F_{29}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-115})\). |
| The base change of $A$ to $\F_{29^{3}}$ is 1.24389.di 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-115}) \)$)$ |
Base change
This is a primitive isogeny class.