Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - x + 61 x^{2} )( 1 + 14 x + 61 x^{2} )$ |
$1 + 13 x + 108 x^{2} + 793 x^{3} + 3721 x^{4}$ | |
Frobenius angles: | $\pm0.479608352732$, $\pm0.853724980602$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $191$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4636$ | $14019264$ | $51603482896$ | $191634871244544$ | $713294833725285676$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $75$ | $3769$ | $227346$ | $13840609$ | $844539375$ | $51521216038$ | $3142740837675$ | $191707312689889$ | $11694145857028026$ | $713342913214373329$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 191 curves (of which all are hyperelliptic):
- $y^2=58 x^6+58 x^5+x^4+44 x^3+20 x^2+46 x+34$
- $y^2=30 x^6+36 x^5+35 x^4+32 x^3+28 x^2+x+39$
- $y^2=30 x^6+22 x^5+33 x^4+48 x^3+6 x^2+41 x+5$
- $y^2=49 x^6+55 x^5+49 x^4+24 x^3+2 x^2+19 x+46$
- $y^2=25 x^6+41 x^5+30 x^4+37 x^3+52 x^2+21 x+39$
- $y^2=14 x^6+16 x^5+29 x^4+43 x^3+59 x^2+24 x+22$
- $y^2=14 x^6+11 x^5+15 x^4+49 x^3+21 x^2+51 x+57$
- $y^2=3 x^6+60 x^5+3 x^4+35 x^3+51 x^2+34 x+59$
- $y^2=20 x^6+57 x^5+42 x^4+2 x^3+18 x^2+26 x+3$
- $y^2=36 x^6+40 x^5+53 x^4+57 x^3+23 x^2+57 x+19$
- $y^2=31 x^6+30 x^5+25 x^4+24 x^3+3 x^2+4 x+40$
- $y^2=26 x^6+8 x^5+21 x^4+37 x^3+35 x^2+19 x+38$
- $y^2=8 x^6+36 x^5+42 x^4+27 x^3+53 x^2+27 x+4$
- $y^2=25 x^6+14 x^5+28 x^4+x^3+40 x^2+56 x+55$
- $y^2=37 x^6+35 x^5+28 x^4+51 x^3+24 x^2+24 x+40$
- $y^2=3 x^6+34 x^5+5 x^4+34 x^3+52 x^2+43 x+2$
- $y^2=27 x^6+25 x^5+56 x^4+52 x^3+50 x^2+40 x+55$
- $y^2=60 x^6+26 x^5+13 x^4+24 x^3+9 x^2+60 x+15$
- $y^2=26 x^5+51 x^4+53 x^3+56 x^2+55 x+58$
- $y^2=5 x^6+12 x^5+11 x^4+2 x^3+40 x^2+41 x+36$
- and 171 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{3}}$.
Endomorphism algebra over $\F_{61}$The isogeny class factors as 1.61.ab $\times$ 1.61.o and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{61^{3}}$ is 1.226981.ha 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.