Properties

Label 2.73.q_ic
Base field $\F_{73}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $( 1 + 8 x + 73 x^{2} )^{2}$
  $1 + 16 x + 210 x^{2} + 1168 x^{3} + 5329 x^{4}$
Frobenius angles:  $\pm0.655084565757$, $\pm0.655084565757$
Angle rank:  $1$ (numerical)
Jacobians:  $42$
Cyclic group of points:    no
Non-cyclic primes:   $2, 41$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6724$ $29289744$ $150371777284$ $806683601534976$ $4297870658799332164$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $90$ $5494$ $386538$ $28406110$ $2073189690$ $151332707158$ $11047402051146$ $806460174534334$ $58871585789306394$ $4297625831022511414$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73}$.

Endomorphism algebra over $\F_{73}$
The isogeny class factors as 1.73.i 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-57}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.aq_ic$2$(not in LMFDB)
2.73.a_de$2$(not in LMFDB)
2.73.ai_aj$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.aq_ic$2$(not in LMFDB)
2.73.a_de$2$(not in LMFDB)
2.73.ai_aj$3$(not in LMFDB)
2.73.a_ade$4$(not in LMFDB)
2.73.i_aj$6$(not in LMFDB)