Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 8 x + 73 x^{2} )^{2}$ |
| $1 + 16 x + 210 x^{2} + 1168 x^{3} + 5329 x^{4}$ | |
| Frobenius angles: | $\pm0.655084565757$, $\pm0.655084565757$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $42$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 41$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6724$ | $29289744$ | $150371777284$ | $806683601534976$ | $4297870658799332164$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $90$ | $5494$ | $386538$ | $28406110$ | $2073189690$ | $151332707158$ | $11047402051146$ | $806460174534334$ | $58871585789306394$ | $4297625831022511414$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=68 x^6+29 x^5+22 x^4+38 x^3+17 x^2+5 x+27$
- $y^2=2 x^6+30 x^5+32 x^4+68 x^3+32 x^2+30 x+2$
- $y^2=65 x^6+67 x^5+32 x^4+38 x^3+67 x^2+27 x+13$
- $y^2=12 x^6+68 x^5+49 x^4+46 x^3+49 x^2+68 x+12$
- $y^2=41 x^6+67 x^5+40 x^4+43 x^3+20 x^2+70 x+40$
- $y^2=3 x^6+45 x^5+36 x^4+55 x^3+25 x^2+59 x+46$
- $y^2=70 x^6+38 x^5+60 x^4+60 x^3+36 x^2+69 x+50$
- $y^2=23 x^6+18 x^5+42 x^4+40 x^3+28 x^2+36 x+23$
- $y^2=36 x^6+34 x^5+46 x^4+33 x^3+46 x^2+34 x+36$
- $y^2=48 x^6+60 x^4+60 x^2+48$
- $y^2=43 x^6+57 x^5+9 x^4+10 x^3+50 x^2+37 x+63$
- $y^2=12 x^6+11 x^5+41 x^4+25 x^3+31 x^2+64 x+16$
- $y^2=46 x^6+30 x^5+41 x^4+30 x^3+48 x+50$
- $y^2=60 x^6+70 x^5+70 x^4+22 x^3+27 x^2+72 x+61$
- $y^2=x^6+48 x^5+18 x^3+67 x^2+35 x+4$
- $y^2=24 x^6+71 x^5+9 x^4+4 x^3+11 x^2+38 x+63$
- $y^2=x^6+11 x^5+45 x^4+70 x^3+44 x^2+6 x+33$
- $y^2=71 x^6+15 x^5+7 x^4+31 x^3+7 x^2+33 x+46$
- $y^2=54 x^6+66 x^5+44 x^4+27 x^3+37 x^2+12 x+25$
- $y^2=65 x^6+7 x^5+69 x^4+63 x^3+41 x^2+37 x+10$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The isogeny class factors as 1.73.i 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-57}) \)$)$ |
Base change
This is a primitive isogeny class.